首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2014年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
  1992年   2篇
  1990年   1篇
排序方式: 共有29条查询结果,搜索用时 797 毫秒
21.
In studies of actin, the basic protein of muscles and cytoskeleton, protease ECP32 is of particular significance. This enzyme originates from the natural enterobacteria strain that accumulates minor amounts of the protease intracellularly at the post-exponential growth phase. The limiting factor for this biosynthesis is the amount of oxygen that enters the medium. The highly efficient method of the two-phase cultivation with vigorous aeration at the exponential growth phase was recommended. Due to the studied enzyme properties, the use of either the affinity or one-stage purification methods results in a rather decreased potential for success. To overcome the obstacles of the above methods, we developed a simple method for the ECP32 preparation and storage with purity and activity levels that satisfy the requirements of the actin structure and function investigations.  相似文献   
22.
Signal peptides (SP) are short peptides located in the N-terminal of proteins, carrying information for protein secretion. They are ubiquitous to all prokaryotes and eukaryotes. SPs have been of special interest in several scientific and industrial fields, including recombinant protein production, disease diagnosis, immunization, and laboratory techniques. Recently, the role of SPs in recombinant protein production has gained too much attention. Herein, several studies have been reviewed to elucidate the precise structure and function of SPs, particularly the optimized ones for recombinant protein production. However, some features of SPs still have remained obscure. In this review, some approaches concerning elucidation and optimization of SPs are discussed, and pragmatic conclusions and suggestions for future studies are also proposed. Moreover, a summary of secretory pathways, evolutionary changes, functions, applications, and different types of SPs is mentioned. At last, current limitations and prospects are discussed.  相似文献   
23.
Eosinophil cationic protein (ECP), a human RNAseA superfamily member, highly implicated in asthma pathology, is toxic to bronchial epithelial cells following its endocytosis. The mechanism by which ECP is internalized into cells is poorly understood. In this study, we show that cell surface-bound heparan sulfate proteoglycans serve as the major receptor for ECP internalization. Removal of cell surface heparan sulfate by heparinases or reducing glycan sulfation by chlorate markedly decreased ECP binding to human bronchial epithelial Beas-2B cells. In addition, ECP uptake and associated cytotoxicity were reduced in glycosaminoglycan-defective cells compared with their wild-type counterparts. Furthermore, pharmacological treatment combined with siRNA knockdown identified a clathrin- and caveolin-independent endocytic pathway as the major route for ECP internalization. This pathway is regulated by Rac1 and ADP-ribosylating factor 6 GTPases. It requires cholesterol, actin cytoskeleton rearrangement and phosphatidylinositol-3-kinase activities, and is compatible with the characteristics of raft-dependent macropinocytosis. Thus, our results define the early events of ECP internalization and may have implications for novel therapeutic design for ECP-associated diseases.  相似文献   
24.
目的:探讨异位性皮炎(AD)患者的血清嗜酸细胞阳离子蛋白(ECP)、总IgE、吸入性变应原Phadiatop和食物性变应原fx5E间的相关性。方法:随机选取我院门诊就诊和住院治疗的AD患者60例,选取健康体检者30例为对照组,同期检测ECP、总IgE、Phadiatop和fx5E血清浓度并比较。结果:AD患者血清ECP和总IgE水平均明显高于正常对照组(P<0.05);患者组中血清ECP与总IgE之间无相关性;Phadiatop在患者组中阳性率为86.67%,fx5E阳性率为18.33%。结论:AD患者血清ECP水平是反映嗜酸粒细胞活化和过敏状态的敏感指标,能更有效地监测AD患者病情变化与疗效。吸入性和食物性变应原均可引起AD,尤以吸入性变应原为主。对AD患者进行CAP系统中变应原过筛检测,是AD防治的重要手段之一。  相似文献   
25.
Two experiments were designed to evaluate the effects of treatments with low versus high serum progesterone (P4) concentrations on factors associated with pregnancy success in postpubertal Nellore heifers submitted to either conventional or fixed timed artificial insemination (FTAI). Heifers were synchronized with a new controlled internal drug release device (CIDR; 1.9 g of P4 [CIDR1]) or a CIDR previously used for 18 days (CIDR3) plus 2 mg of estradiol (E2) benzoate on Day 0 and 12.5 mg of prostaglandin F2α on Day 7. In experiment 1 (n = 723), CIDR were removed on Day 7 or 9 and heifers were inseminated after estrus detection. In experiment 2 (n = 1083), CIDR were all removed on Day 9 and FTAI was performed either 48 hours later in heifers that received E2 cypionate (ECP) on Day 9 (0.5 mg; E48) or 54 or 72 hours later in conjunction with administration of GnRH (100 μg; G54 or G72). Synchronization with CIDR1 resulted in greater serum P4 concentrations and smaller follicle diameters on Days 7 and 9 in both experiments. In experiment 1, treatment with CIDR for 9 days decreased the interval from CIDR removal to estrus (Day 7, 3.76 ± 0.08 days vs. Day 9, 2.90 ± 0.07; P < 0.01) and improved conception (Day 7, 57.1% vs. Day 9, 65.8%; P = 0.05) and pregnancy rates (Day 7, 37.6% vs. Day 9, 45.3%; P = 0.04). In experiment 2, treatment with ECP improved (P < 0.01) the proportion of heifers in estrus (E48, 40.9%a; G54, 17.1%c; and G72, 32.0%b), but the pregnancy rate was not affected (P = 0.64) by treatments (E48, 38.8%; G54, 35.5%; G72, 37.5%). Synchronization with CIDR3 increased follicle diameter at FTAI (CIDR1, 11.07 ± 0.10 vs. CIDR3, 11.61 ± 0.10 mm; P < 0.01), ovulation rate (CIDR1, 82.8% vs. CIDR3, 88.0%; P < 0.01) and did not affect conception (CIDR1, 42.2 vs. CIDR3, 45.1%; P = 0.38) or pregnancy rates (CIDR1, 34.7 vs. CIDR3, 39.4%; P = 0.11). In conclusion, length of treatment with P4 affected the fertility of heifers bred based on estrus detection. When the heifers were submitted to FTAI protocol, follicle diameter at FTAI (≤10.7 mm, 23.6%; 10.8–15.7 mm, 51.5%; ≥15.8 mm, 30.0%; P < 0.01) was the main factor that affected conception and pregnancy rates.  相似文献   
26.
27.
The ability to efficiently and accurately predict solid-state geometries of lanthanide coordination compounds efficiently and accurately is central for the design of new ligands capable of forming stable and highly luminescent complexes. Accordingly, we present in this paper a report on the capability of various ab initio effective core potential calculations in reproducing the coordination polyhedron geometries of lanthanide complexes. Starting with all combinations of HF, B3LYP and MP2(Full) with STO-3G, 3-21G, 6-31G, 6-31G* and 6-31+G basis sets for [Eu(H2O)9]3+ and closing with more manageable calculations for the larger complexes, we computed the fully predicted ab initio geometries for a total of 80 calculations on 52 complexes of Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III) and Tm(III), the largest containing 164 atoms. Our results indicate that RHF/STO-3G/ECP appears to be the most efficient model chemistry in terms of coordination polyhedron crystallographic geometry predictions from isolated lanthanide complex ion calculations. Moreover, both augmenting the basis set and/or including electron correlation generally enlarged the deviations and aggravated the quality of the predicted coordination polyhedron crystallographic geometry. Our results further indicate that Cosentino et al.’s suggestion of using RHF/3-21G/ECP geometries appears to be indeed a more robust, but not necessarily, more accurate recommendation to be adopted for the general lanthanide complex case. Figure Graphical visualization of unsigned mean errors, UME(Eu-L)s, involving only the interatomic distances between the europium central ion and the oxygen atoms of the coordination polyhedron of the cation nona-aqua-europium(III) for various model chemistries, all compared to the “Cambridge Structural Database 2004” crystallographic geometry  相似文献   
28.
The eosinophil granule proteins, major basic protein (MBP) and eosinophil cationic protein (ECP), activate mast cells during inflammation; however the mechanism responsible for this activity is poorly understood. We found that some theoretical tryptase-digested fragments of MBP and ECP induced degranulation of human cord blood-derived mast cells (HCMCs). The spectrum of activities of these peptides in HCMCs coincided with intracellular Ca2+ mobilization activities in Mas-related G-protein coupled receptor family member X2 (MRGPRX2)-expressing HEK293 cells. Two peptides corresponding to MBP residues 99–110 (MBP (99–110)) and ECP residues 29–45 (ECP (29–45)), respectively, induced degranulation of HCMCs and intracellular Ca2+ mobilization in MRGPRX2-expressing HEK293 cells in a concentration-dependent manner. Stimulation with MBP (99–110) or ECP (29–45) induced the production of prostaglandin D2 by HCMCs. The activities of MBP (99–110) and ECP (29–45) in both HCMCs and MRGPRX2-expressing HEK293 cells were inhibited by MRGPRX2-specific antagonists. In conclusion, these results indicated that MBP and ECP fragments activate HCMCs, and it may occur via MRGPRX2. Our findings suggest that tryptase-digested fragments of eosinophil cationic proteins acting via the MRGPRX2 pathway may further our understanding of mast cell/eosinophil communication.  相似文献   
29.
Human ribonucleases (RNases) are members of a large superfamily of rapidly evolving homologous proteins. Upon completion of the human genome, eight catalytically active RNases (numbered 1-8) were identified. These structurally distinct RNases, characterized by their various catalytic differences on different RNA substrates, constitute a gene family that appears to be the sole vertebrate-specific enzyme family. Apart from digestion of dietary RNA, a wide variety of biological actions, including neurotoxicity, angiogenesis, immunosuppressivity, and anti-pathogen activity, have been recently reported for almost all members of the family. Recent evolutionary studies suggest that RNases started off in vertebrates as host defence or angiogenic proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号