首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3737篇
  免费   313篇
  国内免费   708篇
  2023年   68篇
  2022年   63篇
  2021年   106篇
  2020年   127篇
  2019年   149篇
  2018年   144篇
  2017年   120篇
  2016年   118篇
  2015年   163篇
  2014年   172篇
  2013年   228篇
  2012年   158篇
  2011年   183篇
  2010年   123篇
  2009年   209篇
  2008年   197篇
  2007年   229篇
  2006年   201篇
  2005年   189篇
  2004年   134篇
  2003年   142篇
  2002年   119篇
  2001年   120篇
  2000年   88篇
  1999年   109篇
  1998年   69篇
  1997年   83篇
  1996年   76篇
  1995年   73篇
  1994年   67篇
  1993年   64篇
  1992年   60篇
  1991年   61篇
  1990年   66篇
  1989年   47篇
  1988年   45篇
  1987年   48篇
  1986年   43篇
  1985年   58篇
  1984年   54篇
  1983年   22篇
  1982年   48篇
  1981年   27篇
  1980年   39篇
  1979年   17篇
  1978年   6篇
  1977年   10篇
  1976年   3篇
  1975年   3篇
  1972年   4篇
排序方式: 共有4758条查询结果,搜索用时 15 毫秒
61.
The areal distribution of organic C contents, 13C values, total N and P and biogenic Si contents in surficial sediments were used to study the distribution, origin and diagenetic transformations of sedimented biogenic debris in the eutrophic subalpine Lake Bled (Slovenia), which for most of the yearhas an anoxic hypolimnion. The influence of an allochthonous input, restricted to the western basin, was clearly traced by higher organic C and total N and P contents, higher 13C values, and higher sedimentation rate in comparison to the eastern basin. The low 13C values of sedimentary organic matter in the major part of the lake, lower than the 13C values of different types of organic matter, suggest that this sedimentary organic matter is most probably the product of a microbial community and not a residue of primary production.The temporal variation of benthic diffusive fluxes of NH4, Si and PO4, derived from modelling the pore water profiles, was related to sedimentation of phytoplanktonic blooms, while the PO4 fluxes were also dependent on changing redox conditions at the sediment-water interface in the period of the winter-spring overtum. The removal of PO4 in pore waters is probably due to the adsorption of phosphate and precipitation of apatite and vivianite. The budget of C, N and P at the sediment-water interface revealed a high recycling efficiency (>70%), also confirmed by the rather uniform (or only slightly decreasing) vertical profiles of organic C, total N and P in sediment cores and C/N and C/P ratios. The percentage of biogenic Si recycling is low (<10%), suggesting its removal in sediments.  相似文献   
62.
Measurements of N2O emission fluxes from a 3 ha field of winter wheat were measured using eddy covariance and relaxed eddy accumulation continuously over 10 days during April 1994. The measurements averaged fluxes over approximately 105 m2 of the field, which was fertilised with NH4NO3 at a rate of 43 kg N ha-1 at the beginning of the measurements. The emission fluxes became detectable after the first heavy rainfall, which occured 4 days after fertiliser application. Emissions of N2O increased rapidly during the day following the rain to a maximum of 280 ng N m-2s-1 and declined over the following week. During the period of significant emission fluxes, a clear diurnal cycle in N2O emission was observed, with the daytime maximum coinciding with the soil temperature maximum at 12 cm depth. The temperature dependence of the N2O emission was equivalent to an activation energy for N2O production of 108 kJ mol-1. The N2O fluxes measured using relaxed eddy accumulation, averaged over 30 to 270 min, were in agreement with those of the eddy covariance system within 60%. The total emission of N2O over the period of continuous measurement (10 days) was equivalent to about 10 kg N2O-N, or 0.77% of the N fertiliser applied.  相似文献   
63.
Turnover of organic nitrogen in soils and its availability to crops   总被引:4,自引:0,他引:4  
K. Mengel 《Plant and Soil》1996,178(1):83-93
The root development of barley seedlings grown for one week in an aerated nutrient solution was studied in the presence of dissolved organic matter from an aqueous chestnut leaf litter extract. In particular, the different effects of low and high molecular weight fractions (small molecules: molecular weight <1000; large molecules: >10,000) of the leaf litter extract were examined. In the presence of large molecules root growth was inhibited, an irregular root tip morphology was observed, and Ca and Mg concentrations in the shoots were lower than in control plants. These phytotoxic effects were not caused by the formation of an impermeable layer of large molecules on the root surfaces that lower accessibility for nutrient cations as inferred from voltammetric experiments. A germination assay using spruce seeds, however, indicated allelochemical effects of large molecules, which exhibit a higher aromaticity than the small molecules as indicated by spectroscopic characterisation. In the growth experiments with small molecules, no influence on the root development of barley was evident, but an increase of Ca and Mg in the shoots was detected. During these growth experiments, a large amount of the small molecules, mainly simple phenols and amino acids, disappeared from the nutrient solution. The loss of small molecules was most likely the effect of mineralisation.Abbreviations DOC dissolved organic carbon - DOM dissolved organic matter - LLE leaf litter extract - MW molecular weight - HMDE hanging mercury drop electrode  相似文献   
64.
I analyzed the rates of net N mineralization and nitrification of soils from seven sites in a Hawaiian wet montane forest. The sites differ in age, ranging from 400 to 4,100,000 yr, but are comparable in other variables (all at 1200 miasl with 4000 mm or more mean annual rainfall), and the chronosequence simulated a development of soils from basaltic lava. Soils were incubated for 20 days at 17.5 °C, which is nearly equivalent to a mean field air temperature of the sites, and at an elevated temperature of 25.5 °C under three treatments: 1) field-wet without amendments, 2) air dried to a permanent wilting point, and 3) fertilized with phosphate (NaH2PO4) at the rate of 50 g P per g dry soil. Both mineralization and nitrification rates varied significantly among the sites at the field temperature (p<.00001). Fractions of the mineralized organic matter (indexed by the N produced per g organic C) increased sharply from the youngest to the 5000-yr site before declining abruptly to a near constant value from the 9000 to the 1,400,000-yr sites. Total organic C in the top soils (<15 cm deep) increased almost linearly with age across the sites. Consequently, net NH4- and NO3-N produced on an area basis (g m-2 20 d-1) increased sharply from 0.2 in the youngest site to 1.2 in the 5000-yr site, then both became depressed once but steadily increased again. The fraction of organic matter mineralized, and the net N turnover rates were outstandingly high in the oldest site where a large amount of organic matter was observed; the topsoil organic matter which was used in this analysis appeared to be highly labile, whereas the subsurface organic matter could be relatively recalcitrant. As suggested by earlier workers, the initial increase in N turnover seemed to correspond to the increasing quantity of N in the soils through atmospheric deposition and biological fixation. The later decline in fraction of organic matter mineralized seemed to relate to increasing soil C/N ratios, increasingly recalcitrant organic matter, and poorer soil drainage with age. The elevated temperature treatment produced significantly higher amounts of N mineralization, except for the youngest site where N was most limiting, and for two sites where soil waterlogging might be severe. P fertilization invariably resulted in slower N turnovers, suggesting that soil microbes responded to added P causing N immobilization. The youngest site did not significantly respond to added P. The magnitude of immobilization was higher in older than in younger soils, suggesting that P more strongly limits microbial populations in the older soils.  相似文献   
65.
Many crop models relate the allocation of dry matter between shoots and roots exclusively to the crop development stage. Such models may not take into account the effects of changes in environment on allocation, unless the allocation parameters are altered. In this paper a crop model with a dynamic allocation parameter for dry matter between shoots and roots is described. The basis of the model is that a plant allocates dry matter such that its growth is maximized. Consequently, the demand and supply of carbon, nitrogen, and water is maintained in balance. This model supports the hypothesis that a functional equilibrium exists between shoots and roots.This paper explains the mathematical computation procedure of the crop model. Moreover, an analysis was made of the ability of a crop model to simulate plant dry matter production and allocation of dry matter between plant organs. The model was tested using data from a greenhouse experiment in which spring wheat (Triticum aestivum L.) was grown under different soil moisture and nitrogen (N) levels.Generally, the model simulations agreed well with data recorded for total plant dry matter. For validation data the coefficient of determination (r2) between simulated and measured shoot dry weight was 0.96. For the validation treatments r2 was slightly lower, 0.94. In addition to dry matter production the model succeeded satisfactorily in simulating the dry weight of different plant organs. The response of simulated root to shoot ratio to the level of soil moisture was mainly in accordance with the measured data. In contrast, the simulated ratio seemed to be insensitive to the changes in the levels soil N concentration used in the experiment.The data used in the present study were not extensive, and more data are needed to validate the model. However, the results showed that the model responses to the changes in soil N and water level were realistic and mostly agreed with the data. Thus, we suggest that the model and the method employed to allocate dry matter between roots and shoots are useful when modelling the growth of crops under N and water limited conditions.  相似文献   
66.
67.
Measurements of the organic carbon inventory, its stable isotopic composition and radiocarbon content were used to deduce vegetation history from two soil profiles in arboreal and grassy savanna ecotones in the Brazilian Pantanal. The Pantanal is a large floodplain area with grass-dominated lowlands subject to seasonal flooding, and arboreal savanna uplands which are only rarely flooded. Organic carbon inventories were lower in the grassy savanna site than in the upland arboreal savanna site, with carbon decreasing exponentially with depth from the surface in both profiles. Changes in 13C of soil organic matter (SOM) with depth differed markedly between the two sites. Differences in surface SOM 13C values reflect the change from C3 to C4 plants between the sites, as confirmed by measurements of 13C of vegetation and the soil surface along a transect between the upland closed-canopy forest and lowland grassy savanna. Changes of 13C in SOM with depth at both sites are larger than the 3–4 per mil increases expected from fractionation associated with organic matter decomposition. We interpret these as recording past changes in the relative abundance of C3 and C4 plants at these sites. Mass balances with 14C and 13C suggest that past vegetational changes from C3 to C4 plants in the grassy savanna, and in the deeper part of the arboreal savanna, occurred between 4600 and 11 400 BP, when major climatic changes were also observed in several places of the South American Continent. The change from C4 to C3, observed only in the upper part of the arboreal savanna, was much more recent (1400 BP), and was probably caused by a local change in the flooding regime.  相似文献   
68.
The quality of sediment was assessed in 46 sites in the delta of the rivers Rhine and Meuse (The Netherlands) by means of physical-chemical analysis, field observations on the macrobenthic community structure, accumulation studies and bioassays using Chironomus riparius, Daphnia magna and Photobacterium phosphoreum. The results of chemical analyses were classified using national criteria for sediment quality. Results of field studies and bioassays were classified using criteria derived from research in reference areas or based on data from literature. Risk assessment was carried out according to the sediment quality triad and by means of multi criteria analysis (MCA). The Triad approach was used to demonstrate causal relations between effects on the macrozoobenthos community structure, effects demonstrated in bioassays and sediment pollution. This was done by making a comparison of sediment contamination levels with toxicity data from literature for the test organisms of the bioassays. Using the MCA method, for each site a numerical value was derived for total environmental risk in the present situation, based on observed effects. In this way, a relative risk ranking of all sites was realized. The MCA values for the present situation were also compared with MCA scores based on estimated risks after remediation in 1995, in order to set priorities for sites where remediation is expected to cause a significant reduction in environmental risk. In most of the 46 sites studied so far, the macrofauna community was poorly developed, judged by a low number of benthic species, low abundances and a high dominance of species regarded as relatively tolerant to chemical pollution. In bioassays high sediment toxicity was demonstrated for 24 sites. Using the sediment quality triad approach, 25 sites were identified as areas where pollution can be held responsible for the effects observed in the field. From a comparison of contaminant concentrations in different types of food with maximum tolerable risk levels, and the application of a bioaccumulation model it was concluded that the sediment pollution also implies high risks for plant-, benthos- or fish-eating birds (secondary poisoning of top predators). In the Nieuwe Merwede highest MCA risk scores were found for shallow parts where highly polluted sediments are found. It is concluded that the sediment quality triad and the MCA provide additional information which can be used to establish priorities for remedial action. Based on an ecotoxicological evaluation of the improved quality of new sediments that will be deposited after removal of the polluted sediments in the Nieuwe Merwede, it is concluded that in this upstream part of the Rhine delta remedial action will be effective.  相似文献   
69.
Organic matter composition (lignin, holocellulose, 50% (v/v) methanol extract, water-soluble carbohydrate (WSC) and phenolics (WSP), petroleum ether extract, and ash) of A0 layer soil treated with 700 g/m2 of urea to promote ammonia fungi was investigated in a Japanese red pine (Pinus densiflora) forest. Nine species of fungi were found during the study period of 18 months after the treatment. Of these, seven species belong to the ammonia fungi. WSC content of the treated soil was lower than that of the control. Methanol extract content increased initially after the treatment, then decreased to below the control level. There were no consistent differences in other components between the treated plot and the control. The abilities to decompose cellulose, lignin, chitin, protein and lipid in 18 strains in 10 species of the ammonia fungi were also screened. Cellulose was not lysed byPseudombrophila deerata, Hebeloma spp. andLaccaria bicolor. Strong lignolytic activity was shown byLyophyllum tylicolor, Coprinus echinosporus andP. deerata. Chitin was decomposed byAmblyosporium botrytis, L. tylicolor, C. echinosporus andHebeloma vinosophyllum. All strains possessed proteolytic and lipolytic activities. Supply of glucose to the culture media resulted in weaker enzyme activities except for lignolytic ability.  相似文献   
70.
Seasonality in fine root standing crop and production was studied in two tropical dry evergreen forests viz., Marakkanam reserve forest (MRF) and Puthupet sacred grove (PSG) in the Coromandel coast of India. The study extended from December 89 to December 91 in MRF and from August 90 to December 91 in PSG with sampling at every 2 months. Total fine interval. Mean fine root standing crop was 134 g m−2 in MRF and 234 g m−2 in PSG. root production was 104 g m−2 yr−1 in MRF and 117 g m−2 yr−1 in PSG. These estimates lie within the range for fine roots reported for various tropical forests. Rootmass showed a pronounced seasonal pattern with unimodal peaks obtained during December in the first year and from October–December in the second year in MRF. In PSG greater rootmass was noticed from June–October than other times of sampling. The total root mass in MRF ranged from 114 to 145 g m−2 at the 13 sampling dates in the three sites. The live biomass fraction of fine roots in MRF ranged from 46 to 203 g m−2 and in PSG it ranged from 141 to 359 g mm−2 during the study periods. The dead necromass fraction of fine roots ranged from 6 to 37 g m−2 in MRF and from 12 to 66 g m−2 in PSG. Fine root production peaked during December in both the forest sites. The necromass fraction of newly produced roots was negligible. Total N was slightly greater in PSG than in MRF. Whereas total P level was almost similar in both the sites. The study revealed that season and site characteristics influenced fine root system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号