首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   19篇
  国内免费   8篇
  2023年   3篇
  2021年   1篇
  2020年   2篇
  2019年   7篇
  2018年   4篇
  2017年   1篇
  2016年   10篇
  2015年   3篇
  2014年   7篇
  2013年   15篇
  2012年   8篇
  2011年   9篇
  2010年   4篇
  2009年   7篇
  2008年   15篇
  2007年   16篇
  2006年   9篇
  2005年   13篇
  2004年   10篇
  2003年   8篇
  2002年   3篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
21.
Carbohydrate binding underlies many cell recognition events. Here, we describe a multiplexed glyco-bead array method for determining the carbohydrate-binding specificities of plant lectins using a bead-based flow cytometric analysis. N-glycans including high mannose, hybrid, and complex types and O-glycans from glycoproteins were immobilized on multiplexed beads, and the specificities of 13 kinds of sugar chains were monitored within 2 h in a single reaction. This strategy is easy, rapid, reproducible, and suitable for small samples and allows the reliable and simultaneous elucidation of sugar-binding properties under identical conditions.  相似文献   
22.
目的应用选择性冠状动脉前降支(LAD)球囊闭塞结合微血栓微球混悬液灌注方法造成心肌缺血坏死,探索建立稳定存活的小型猪急性心肌梗死(AMI)后心力衰竭(HF)动物模型。方法选择中国五指山小型猪18头,行冠脉造影后沿血管送球囊至LAD中段,依次扩张球囊阻断前向血流1、2、5 min,每次间隔60 s,然后扩张球囊堵闭血流120 min。再以4F导管超选LAD,行微血栓微球混悬液分次注入,间隔10 min重复注射,TIMI心肌灌注分级(TMPG)2级和左室舒张末压(LVEDP)15 mm Hg时停止注射,同时监测心电图及应用漂浮导管监测有创血流动力学参数。并行pigtail导管测量(LVEDP)的变化,待LVEDP稳定在15~18 mm Hg之间后结扎血管,并加压包扎。监测心肌坏死标志物(cTnI和CK-MB)变化。分别于制模前,制模后第1天、7天、14天行心脏超声检查,制模第14天复查有创血流动力学检查,并行心脏病理检查,认定和评价模型的成功率、稳定性和可重复性。结果制模14 d后共有15头小型猪成活,心电图、心肌坏死标记物、病理检查均符合AMI病理生理过程。其中14头小型猪达到动物模型标准【肺毛细血管楔压(PCWP)18 mmHg和心输出量(CO)下降30%以上】,模型成功率为77.78%。制模后第14天PCWP明显升高(P0.01),CO平均下降50.76%;左室射血分数(LVEF)明显降低(P0.01)。病理检查显示心肌梗死面积占左心室面积的25.4%~34.9%。结论球囊闭塞结合微血栓微球混悬液灌注构建小型猪急性心肌梗死后心力衰竭模型具有闭胸、高成功率、稳定和重复性好等优点,较药物、冠状动脉结扎和起搏诱导的心力衰竭模型更接近临床病理生理学特点。  相似文献   
23.
Particulate antigen uptake by the mucosa of developing channel catfish was determined by immersing larvae and fry [2-day post-hatch (dph), 1-, 2-, 3-, 4-, and 8-week post-hatch (wph)] to two forms of fluorescent microspheres (FMS): blue FMS were carboxylated, and green FMS were coated via conjugation with a crude extract of Edwardsiella ictaluri outer membrane protein (OMP). Phagocytosis, destination, and clearance appeared similar for the two types of FMS used. In the older age classes, primary uptake was observed in epithelial cells of the torso, fins, nares and to a lesser extent the gills. Fluorescent microspheres were less frequently observed within mononuclear phagocytes in the epidermis, dermis and underlying connective tissue of the tissue mentioned above. Limited FMS trafficking was observed from 4- to 24-h post-immersion (hpi). Significantly higher numbers of FMS (blue and green)/mm(3) of tissue were observed in the posterior kidney of the 4- and 8-wph age classes and in the anterior kidney and spleen of the 8-wph age class when compared to younger age classes (p < 0.05). Significantly higher FMS (blue and green)/mm(3) of tissue were observed in the posterior kidney of 4- and 8-wph fish when compared to all other organs (p < 0.05). The present study indicates that FMS uptake increases with age in channel catfish. The younger age classes may possess an increased ability to exclude particulate antigen, or lack the specific mechanisms that needed to take up particulates in the form of FMS.  相似文献   
24.
An ideal chemotherapeutic strategy would be to deliver a high concentration of drug that would be released in sustained small amounts from targeted microspheres to effectively kill only the tumour cells and thus reduce toxicity to normal tissue. Clonogenic and cell survival growth curve assays, as well as the micronucleus assay, were used to determine the feasibility of employing targeted immunomicrospheres in the treatment of cancer. Cells of a rodent ovarian carcinoma cell line, were exposed to cisplatin and 5-fluorouracil, either as free drug or encapsulated in albumin microspheres that were either conjugated to monoclonal antibodies or not. In cell survival growth curve assays, cell survival was reduced to 1.2% of the control when cells were treated with drug-containing immunomicrospheres. 3.2-fold more micronuclei were found in those cells that had been exposed to the drugs in immunomicrospheres than in those subjected to untargeted microspheres. All three assays demonstrated that the targeted immunomicrospheres were more effective in delivering cisplatin and 5-fluorouracil directly to the cells than the unconjugated microspheres, thus suggesting that targeted chemotherapy might be a more effective option in the treatment of cancer.  相似文献   
25.
In present work, porous dextran microspheres with good morphology were synthesized by reversed-phase suspension polymerization. Dextran was used as raw material, epichlorohydrin (ECH) as crosslinker, and dimethyl ether of polyethylene glycol (DMPE) as porogen. And porous dextran microspheres were prepared by freezing-drying method. The morphology of the porous dextran microspheres was characterized by the scanning electronic microscope (SEM). The dry and hydrated densities, average pore volume, porosity, hydroxyl content and equilibrium water content were measured. Micropore structure was found on the dextran microspheres. With the increase of porogen amount, the dry density decreased, the hydrated density, the average pore volume, porosity and equilibrium water content initially increased and then decreased, while the hydroxyl content increased. Bovine serum albumin (BSA) was used as an adsorbate model to examine the adsorption behavior of the porous microspheres. The saturated adsorption capacities of these microspheres ranged from 59.1 mg/g to 138.9 mg/g while the amount of porogen increased from 10% to 50%.  相似文献   
26.
Multipotent stem cells have been shown to be extremely useful in the field of regenerative medicine. However, in order to use these cells effectively for tissue regeneration, a number of variables must be taken into account. These variables include: the total volume and surface area of the implantation site, the mechanical properties of the tissue and the tissue microenvironment, which includes the amount of vascularization and the components of the extracellular matrix. Therefore, the materials being used to deliver these cells must be biocompatible with a defined chemical composition while maintaining a mechanical strength that mimics the host tissue. These materials must also be permeable to oxygen and nutrients to provide a favorable microenvironment for cells to attach and proliferate. Chitosan, a cationic polysaccharide with excellent biocompatibility, can be easily chemically modified and has a high affinity to bind with in vivo macromolecules. Chitosan mimics the glycosaminoglycan portion of the extracellular matrix, enabling it to function as a substrate for cell adhesion, migration and proliferation. In this study we utilize chitosan in the form of microspheres to deliver adipose-derived stem cells (ASC) into a collagen based three-dimensional scaffold. An ideal cell-to-microsphere ratio was determined with respect to incubation time and cell density to achieve maximum number of cells that could be loaded. Once ASC are seeded onto the chitosan microspheres (CSM), they are embedded in a collagen scaffold and can be maintained in culture for extended periods. In summary, this study provides a method to precisely deliver stem cells within a three dimensional biomaterial scaffold.  相似文献   
27.
Li Y  Lin H  Deng C  Yang P  Zhang X 《Proteomics》2008,8(2):238-249
In this work, we present, to our knowledge, the first demonstration of the utility of iron oxide magnetic microspheres coated with gallium oxide for the highly selective enrichment of phosphopeptide prior to mass spectrometric analysis. These microspheres that we prepared not only have a shell of gallium oxide, giving them a high-trapping capacity for the phosphopeptides, but also their magnetic property enables easy isolation by positioning an external magnetic field. Tryptic digest products of phosphoproteins including beta-casein, ovalbumin, casein, as well as five protein mixtures were used as the samples to exemplify the feasibility of this approach. In very short time (only 0.5 min), phosphopeptides sufficient for characterization by MALDI-TOF-MS were selectively enriched by the Ga(2)O(3)-coated Fe(3)O(4) microspheres. The performance of the Ga(2)O(3)-coated Fe(3)O(4) microspheres were further compared with Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC resin, and TiO2 beads for enrichment of peptides originating from tryptic digestion of beta-casein and BSA with a molar ratio of 1:50, and the results proved a stronger selective ability of Ga(2)O(3)-coated Fe(3)O(4) microspheres over the other materials. Finally, the Ga(2)O(3)-coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. All results show that Ga(2)O(3)-coated Fe(3)O(4) microsphere is an effective material for selective isolation and concentration of phosphopeptides.  相似文献   
28.
In this study the w/o/w extraction–evaporation technique was adopted to prepare poly(lactic-co-glycolic acid) (PLGA) microspheres loading recombinant human epidermal growth factor (rhEGF). The micro-spheres were characterized for morphology by transmission electron microscopy (TEM) and particle size distribution. The release performances, the proliferation effects and therapeutic effects of rhEGF-loaded PLGA microspheres were all studied. The results showed that these spherical micro-spheres had a narrow size distribution and a high drug encapsulation efficiency (85.6%). RhEGF-loaded microspheres enhanced the growth rate of fibroblasts and wound healing more efficiently than pure rhEGF. The number of the proliferating cell nuclear antigen (PCNA) in the epidermis layer with the mi-crosphere treatment was significantly larger than those of the control groups. Overall locally sustained delivery of rhEGF from biodegradable PLGA microspheres may serve as a novel therapeutic strategy for diabetic ulcer repair.  相似文献   
29.
Many industrially important reactions use immobilized enzymes in non-aqueous, organic systems, particularly for the production of chiral compounds such as pharmaceutical precursors. The addition of a spacer molecule ("tether") between a supporting surface and enzyme often substantially improves the activity and stability of enzymes in aqueous solution. Most "long" linkers (e.g., polyethylene oxide derivatives) are relatively hydrophilic, improving the solubility of the linker-enzyme conjugate in polar environments, but this provides little benefit in non-polar environments such as organic solvents. We present a novel method for the covalent immobilization of enzymes on solid surfaces using a long, hydrophobic polytryptophan tether. Candida antarctica lipase B (CALB) was covalently immobilized on non-porous, functionalized 1-microm silica microspheres, with and without an intervening hydrophobic poly-DL-tryptophan tether (n approximately 78). The polytryptophan-tethered enzyme exhibited 35 times greater esterification of n-propanol with lauric acid in the organic phase and five times the hydrolytic activity against p-nitrophenol palmitate, compared to the activity of the same enzyme immobilized without tethers. In addition, the hydrophobic tethers caused the silica microspheres to disperse more readily in the organic phase, while the surface-immobilized control treatment was less lipophilic and quickly settled out of the organic phase when the suspensions were not vigorously mixed.  相似文献   
30.
A novel magnetic poly(vinyl acetate (VAc)–divinyl benzene (DVB)) material (8–34 μm) was synthesized by copolymerization of vinyl acetate and divinyl benzene using oleic acid-stabilized magnetic colloids as magnetic cores. The magnetic colloids and the copolymer microspheres were characterized with transmission and scanning electron microscopes, respectively. Magnetization of the microspheres could be described by the Langevin function. All the observations indicated that the microspheres were superparamagnetic. Magnetic sedimentation of the microspheres was achieved within 3 min, over 300 times faster than the gravitational sedimentation. Candida cylindracea lipase (CCL) was immobilized to the porous carrier at up to 6750 IU/g carrier, remarkably higher than the previous studies. The pH and temperature dependencies of the immobilized CCL were investigated and the optimum temperature and pH for the immobilized CCL were determined. Activity amelioration of the immobilized CCL for the hydrolysis of olive oil was observed, indicating an interfacial activation of the enzyme after immobilization. Moreover, the immobilized CCL showed enhanced thermal stability and good durability in the repeated use after recovered by magnetic separations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号