首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   9篇
  国内免费   1篇
  2024年   1篇
  2023年   6篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   11篇
  2018年   5篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2007年   4篇
  2005年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
11.
Heat shock proteins (HSPs) play important roles in cellular stress resistance. Previous reports had already suggested that HSP27 played multiple roles in preventing doxorubicin-induced cardiotoxicity. Although HSP25 might have biological functions similar to its human homolog HSP27, the mechanism of HSP25 is still unclear in doxorubicin-induced cardiomyocyte apoptosis. To investigate HSP25 biological function on doxorubicin-induced apoptosis, flow cytometry was employed to analyze cell apoptosis in over-expressing HSP25 H9c2 cells in presence of doxorubicin. Unexpectedly, the H9c2 cells of over-expressing HSP25 have no protective effect on doxorubicin-induced apoptosis. Moreover, no detectable interactions were detected by coimmunoprecipitation between HSP25 and cytochrome c, and HSP25 over-expression failed in preventing cytochrome c release induced by doxorubicin. However, down-regulation of endogenous HSP25 by a specific small hairpin RNA aggravates apoptosis in H9c2 cells. Subsequent studies found that HSP25, but not HSP90, HSP70, and HSP20, interacted with SIRT1. Knockdown of HSP25 decreased the interaction between SIRT1 and p53, leading to increased p53 acetylation on K379, up-regulated pro-apoptotic Bax protein expression, induced cytochrome c release, and triggered caspase-3 and caspase-9 activation. These findings indicated a novel mechanism by which HSP25 regulated p53 acetylation through dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis.  相似文献   
12.
Doxorubicin is a commonly used anti-cancer drug used in treating a variety of malignancies. However, a major adverse effect is cardiotoxicity, which is dose dependent and can be either acute or chronic. Doxorubicin causes injury by DNA damage, the formation of free reactive oxygen radicals and induction of apoptosis. Our aim is to induce expression of the multidrug resistance-associated protein 1 (MRP1) in cardiomyocytes derived from human iPS cells (hiPSC-CM), to determine whether this will allow cells to effectively remove doxorubicin and confer cardioprotection. We generated a lentivirus vector encoding MRP1 (LV.MRP1) and validated its function in HEK293T cells and stem cell-derived cardiomyocytes (hiPSC-CM) by quantitative PCR and western blot analysis. The activity of the overexpressed MRP1 was also tested, by quantifying the amount of fluorescent dye exported from the cell by the transporter. We demonstrated reduced dye sequestration in cells overexpressing MRP1. Finally, we demonstrated that hiPSC-CM transduced with LV.MRP1 were protected against doxorubicin injury. In conclusion, we have shown that we can successfully overexpress MRP1 protein in hiPSC-CM, with functional transporter activity leading to protection against doxorubicin-induced toxicity.  相似文献   
13.
Doxorubicin (DXR) is a highly effective drug for chemotherapy. However, cardiotoxicity reduces its clinical utility in humans. The present study aimed to assess the ameliorative effect of curcumin against DXR‐induced cardiotoxicity in rats. Rats were subjected to oral treatment of curcumin (100 and 200 mg/kg body weight) for 7 days. Cardiotoxicity was induced by single intraperitoneal injection of DXR (40 mg/kg body weight) on the 5th day and the rats sacrificed on 8th day. Curcumin ameliorated DXR‐induced lipid peroxidation, glutathione depletion, decrease in antioxidant (superoxide dismutase, catalase, and glutathione peroxidase) enzyme activities, and cardiac toxicity markers (CK‐MB, LDH, and cTn‐I). Curcumin also attenuated activities of Caspase‐3, cyclooxygenase‐2, inducible nitric oxide synthase, and levels of nuclear factor kappa‐B, tumor necrosis factor‐α, and interleukin‐1β, and cardiac tissue damages that were induced by DXR. Moreover, curcumin decreased the expression of 8‐OHdG and 3,3′‐dityrosine. This study demonstrated that curcumin has a multi‐cardioprotective effect due to its antioxidant, anti‐inflammatory, and antiapoptotic properties.  相似文献   
14.
Doxorubicin (DOX), one useful chemotherapeutic agent, is limited in clinical use because of its serious cardiotoxicity. Growing evidence suggests that angiotensin receptor blockers (ARBs) have cardioprotective effects in DOX‐induced cardiomyopathy. However, the detailed mechanisms underlying the action of ARBs on the prevention of DOX‐induced cardiomyocyte cell death have yet to be investigated. Our results showed that angiotensin II receptor type I (AT1R) plays a critical role in DOX‐induced cardiomyocyte apoptosis. We found that MAPK signaling pathways, especially ERK1/2, participated in modulating AT1R gene expression through DOX‐induced mitochondrial ROS release. These results showed that several potential heat shock binding elements (HSE), which can be recognized by heat shock factors (HSFs), located at the AT1R promoter region. HSF2 markedly translocated from the cytoplasm to the nucleus when cardiomyocytes were damaged by DOX. Furthermore, the DNA binding activity of HSF2 was enhanced by DOX via deSUMOylation. Overexpression of HSF2 enhanced DOX‐induced cardiomyocyte cell death as well. Taken together, we found that DOX induced mitochondrial ROS release to activate ERK‐mediated HSF2 nuclear translocation and AT1R upregulation causing DOX‐damaged heart failure in vitro and in vivo.  相似文献   
15.
16.
The anthracyclines are a group of antibiotics that are among the most potent chemotherapeutic agents. They are highly effective against a broad spectrum of malignancies, including lymphoma, gastric cancer, small cell lung cancer, sarcoma, and breast cancer. Unfortunately, these agents also exhibit a well-recognized cumulative-dose related cardiotoxic profile that limits the extent to which they can be used safely. In clinical practice, most clinicians limit the cumulative dose of doxorubicin (the most widely used agent in this group) to 400-450 mg/m2, but considerable cardiac damage is now known to occur at cumulative dosages considerably below this level. Regimens using newer combinations of agents, the most widely studied of which is the monoclonal antibody trastuzumab, are known to augment the cardiotoxicity of anthracyclines. The application of nanotechnology to medicine involves the use of devices that will interact with the body at the molecular level. These methods can lead to target and tissue specific clinical application, often with minimal or reduced side effects. Liposomal preparations incorporate such technology, thereby altering some important characteristics of the parent compound and facilitating concentration at the tumor site. In the case of liposomal doxorubicin, cardiotoxicity is reduced significantly. This review summarizes the important information on the liposomal preparation of anthracyclines.  相似文献   
17.
We recently demonstrated protective effect of chronic oral nitrate supplementation against cardiomyopathy caused by doxorubicin (DOX), a highly effective anticancer drug. The present study was designed to identify novel protein targets related to nitrate-induced cardioprotection. Adult male CF-1 mice received cardioprotective regimen of nitrate (1 g NaNO(3) per litre of drinking water) for 7 days before DOX injection (15 mg/kg, i.p.) and continued for 5 days after DOX treatment. Subsequently the heart samples were collected for proteomic analysis with two-dimensional differential in-gel electrophoresis with 3 CyDye labelling. Using 1.5 cut-off ratio, we identified 36 proteins that were up-regulated by DOX in which 32 were completely reversed by nitrate supplementation (89%). Among 19 proteins down-regulated by DOX, 9 were fully normalized by nitrate (47%). The protein spots were further identified with Matrix Assisted Laser Desorption/Ionization-Time-of-Flight (MALDI-TOF)/TOF tandem mass spectrometry. Three mitochondrial antioxidant enzymes were altered by DOX, i.e. up-regulation of manganese superoxide dismutase and peroxiredoxin 3 (Prx3), and down-regulation of Prx5, which were reversed by nitrate. These results were further confirmed by Western blots. Nitrate supplementation also significantly improved animal survival rate from 80% in DOX alone group to 93% in Nitrate + DOX group 5 days after the DOX treatment. In conclusion, the proteomic analysis has identified novel protein targets underlying nitrate-induced cardioprotection. Up-regulation of Prx5 by nitrate may explain the observed enhancement of cardiac antioxidant defence by nitrate supplementation.  相似文献   
18.
Anthracyclines is an effective chemotherapeutic treatment used for many types of cancer. However, high cumulative dosage of anthracyclines leads to cardiac toxicity and heart failure. Dysregulation of mitochondrial dynamics and function are major pathways driving this toxicity. Several pharmacological and non‐pharmacological interventions aiming to attenuate cardiac toxicity by targeting mitochondrial dynamics and function have shown beneficial effects in cell and animal models. However, in clinical practice, there is currently no standard therapy for the prevention of anthracycline‐induced cardiotoxicity. This review summarizes current reports on the impact of anthracyclines on cardiac mitochondrial dynamics and mitochondrial function and potential interventions targeting these pathways. The roles of mitochondrial dynamics and mitochondrial function in the development of anthracycline‐induced cardiotoxicity should provide insights in devising novel strategies to attenuate the cardiac toxicity induced by anthracyclines.  相似文献   
19.
Doxorubicin (Dox) is a well-known chemotherapeutic agent used in the treatment of various cancers. However, Dox-induced cardiotoxicity limits its further clinical use. We have previously reported a small molecular named biotin-conjugated ADTM analog (BAA) that exhibits cytoprotective effects against oxidative stress–induced cell injury in cardiomyoblast H9c2 cells. Here, the protective effects of BAA, indexed by attenuation of the cardiotoxicity induced by Dox as well as synergistic antitumor activity that increases the chemotherapeutic efficacy of Dox were investigated. Our results demonstrated that BAA significantly ameliorated Dox-induced toxicity in the H9c2 cells and zebrafish models. In addition, BAA attenuated Dox-induced endoplasmic reticulum (ER) stress in H9c2 cells. An ER stress inhibitor, 4-phenylbutyric acid, reversed the protective effect of BAA in H9c2 cells. In contrast, in human breast tumor MDA-MB-231 cells, BAA significantly enhanced Dox-induced cytotoxicity through upregulating Dox-induced ER stress response. Taken together, our findings indicate that Dox combined with BAA can significantly enhance its antitumor activity in breast cancer cells and reduce its cardiotoxicity, at least in part, by mediating ER stress activation.  相似文献   
20.
The clinical use of doxorubicin (DOX) is limited by its toxic effect. However, there is no specific drug that can prevent DOX-related cardiac injury. C1qTNF-related protein-6 (CTRP6) is a newly identified adiponectin paralog with many protective functions on metabolism and cardiovascular diseases. However, little is known about the effect of CTRP6 on DOX-induced cardiac injury. The present study aimed to investigate whether CTRP6 could protect against DOX-related cardiotoxicity. To induce acute cardiotoxicity, the mice were intraperitoneally injected with a single dose of DOX (15 mg/kg). Cardiomyocyte-specific CTRP6 overexpression was achieved using an adenoassociated virus system at 4 weeks before DOX injection. The data in our study demonstrated that CTRP6 messenger RNA and protein expression were decreased in DOX-treated hearts. CTRP6 attenuated cardiac atrophy induced by DOX injection and inhibited cardiac apoptosis and improved cardiac function in vivo. CTRP6 also promoted the activation of protein kinase B (AKT/PKB) signaling pathway in DOX-treated mice. CTRP6 prevented cardiomyocytes from DOX-induced apoptosis and activated the AKT pathway in vitro. CTRP6 lost its protection against DOX-induced cardiac injury in mice with AKT inhibition. In conclusion, CTRP6 protected the heart from DOX-cardiotoxicity and improves cardiac function via activation of the AKT signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号