首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9192篇
  免费   910篇
  国内免费   254篇
  2024年   22篇
  2023年   216篇
  2022年   173篇
  2021年   417篇
  2020年   384篇
  2019年   529篇
  2018年   355篇
  2017年   304篇
  2016年   305篇
  2015年   345篇
  2014年   500篇
  2013年   635篇
  2012年   370篇
  2011年   366篇
  2010年   314篇
  2009年   321篇
  2008年   358篇
  2007年   340篇
  2006年   302篇
  2005年   249篇
  2004年   278篇
  2003年   234篇
  2002年   252篇
  2001年   210篇
  2000年   150篇
  1999年   169篇
  1998年   163篇
  1997年   147篇
  1996年   123篇
  1995年   126篇
  1994年   145篇
  1993年   106篇
  1992年   155篇
  1991年   126篇
  1990年   122篇
  1989年   128篇
  1988年   133篇
  1987年   108篇
  1986年   84篇
  1985年   107篇
  1984年   118篇
  1983年   86篇
  1982年   82篇
  1981年   77篇
  1980年   48篇
  1979年   27篇
  1978年   10篇
  1977年   9篇
  1976年   7篇
  1972年   6篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
91.
The accumulation of [3H]inositol by mechanically dissociated brain cells and cultured skin fibroblasts from fetal mice was examined. Uptake by both tissues was strongly dependent on temperature and the presence of sodium ions. Brain and fibroblast uptake also responded similarly to inhibition by inositol isomers and phloridzin. At lower concentrations of inositol, both tissues exhibited high-affinity uptake kinetics with apparent Km values near 30 M, similar to values observed previously in human fibroblasts and other cultured cells. The activity of brain high-affinity uptake was nearly an order of magnitude lower than that of fibroblasts, however, and was in part confounded by the presence of a low-affinity or simple diffusion system operating at inositol concentrations above 100M. Brain preparation from adult mice also showed evidence of high-affinity, Na+ dependent uptake, but its activity was significantly diminished relative to that of fetal brain preparations. Our results demonstrate that a high-affinity inositol transport system closely resembling that found in cultured cells is expressed in the developing mouse brain.  相似文献   
92.
Plasmolipin is a plasma membrane proteolipid is a major myelin membrane component (Cochary et al., 1990). In this study we report the phylogenic expression of plasmolipin in the vertebrate nervous system. Using Western blot analysis with polyclonal antibodies, we have analyzed membrane fractions, including myelin, from elasmobranchs, teleosts, amphibians, reptiles, birds and mammals. On the basis of immune detection, plasmolipin appears to be restricted to the mammalian nervous system. Comparison of the central and peripheral nervous systems of mammals showed only minor differences in the level of plasmolipin in these two regions. Within mammals, little quantitative differences were observed when rat, human and bovine membrane fractions were compared. The late evolutionary expression of plasmolipin which results in its restriction to mammals makes it unique among the (major) myelin proteins. The potential physiologic significance of these data are discussed.Abbreviations EDTA Ethylene diamine N.,NN tetracetic acid - EGTA Ethylene glycol bis-(B-Aminoethyl Ether) N,,NN tetracetic acid - MES ([N-Morpholino] ethane sulfonic acid) DCCD, N, Dicyclohexyl carbodiimide  相似文献   
93.
The studies reviewed here represent a continuing search for mechanisms which play a role in neurological disturbances resulting from brain injury. Focal cortical freezing lesions in rats were shown to cause a widespread decrease in local cerebral glucose utilization (LCGU) in cortical areas of the lesioned hemisphere and this was interpreted as reflecting a depression of cortical activity. Such an interpretation was supported by the finding that in lesioned brain reduction of cerebral metabolism by pentobarbital and isoflurane was limited by the metabolic depression that has already occurred as a result of injury and by the demonstration that the energy status and substrate (glucose) supply in the cortical areas in the injured brain have not been compromised at the time when LCGU was decreased. Both the serotonergic and the noradrenergic neurotransmitter systems were implicated in functional alterations associated with injury. Cortical serotonin (5-HT) metabolism was increased throughout the lesioned hemisphere and complete inhibition of 5-HT synthesis withp-chlorophenylalanine ameliorated the decrease in cortical LCGU, interpreted as reflecting cortical functional depression. Cortical norepinephrine metabolism was bilaterally increased in focally injured brain, while prazosin, a selective 1-noradrenergic receptor blocker, normalized cortical LCGU in the lesioned hemisphere. Low-affinity in vivo binding of [125I]HEAT, another selective 1-receptor ligand, was specifically increased in cortical areas of the lesioned hemisphere at the time of the greatest depression in LCGU, suggesting that 1-adrenoreceptors may be of functional importance in injured brain. The general conclusion from this series of studies on mechanisms underlying functional disturbances in injured brain is that both the serotonergic and the noradrenergic neurotransmitter systems are involved in the widespread cortical depression which develops with time as a consequence of a focal lesion. The data are compatible with the inhibitory effects of NE and 5-HT in the cortex and with the hypothesis that these two transmitter systems affect cortical information processing.  相似文献   
94.
Guanidinoethanesulfonic acid (GES) is known to induce convulsive seizures when administered intracisternally to rabbits and cats. The effects of GES on behavior, electroencephalographic recording and brain monoamine levels were examined in mice. When GES (900 nmol) was intraventricularly injected into mice, focal clonic movements of the face, vibrissae and ears together with twitching of the limbs were observed 0.5–1 min after the injection. Hypersensitivity was observed up to 7 min after the injection, after which the mice behaved normally. GES also induced sporadic spike discharges on electrocorticogram. The levels of 5-hydroxytryptamine (5-HT) of the GES-injected mice were lower than those of the saline-injected mice in the hippocampus, diencephalon, pons-medulla oblongata and cerebellum 5 min after the injection. No changes in the norepinephrine or dopamine levels were found after the GES injection. The level of 5-hydroxyindoleacetic acid increased in the striatum and cerebellum 5 min after the GES injection. These results suggest that GES-induced convulsive activities enhance the serotonergic neuroactivity in order to suppress the convulsions.  相似文献   
95.
Using the developing chick embryo as a model and a very sensitive micromethod for amino acid analysis, a complete analysis is presented of the developmental changes in free amino acid concentration in the blood, in the CSF, and in two different brain regions (optic lobe and frontal lobe) of the chick embryo (from day 4 of incubation, until day 5 post hatching). The developmental profile of Lys is the only one that is almost identical in all three compartments. The developmental profiles of the serum and of the brain are very similar for Arg and Phe, less so for Leu and Gly, and towards the end of the embryonic period, similar also for Val, Ile, Trp, and Met. The amino acid concentrations in the CSF are either much lower than in serum and brain already at the earliest stages, or they progressively decline to levels lower than those in brain and serum, most rapidly between day 6 and 8 of embryonic life. The concentrations of neuroactive amino acids (Gln, Glu, Asp, GABA, Tau, and Gly) in both brain regions begin to increase very early, and continue to rise, except Tau, which goes through a maximum at day 8. Comparative analysis of the developmental profiles of each amino acid in serum, brain, and CSF reveals that the blood supply and the cellular uptake, retention, and metabolism by neural cells are the major determinants of the free amino acid pool of the developing brain.  相似文献   
96.
The effects of a single does of LiCl (2.5 or 10 mEq/kg) on brain inositol and inositol-1-phosphate (Ins1P), intermediates of brain phosphoinositude (PI) turnover, were determinated in male Han: Wistar rats. There was a remarkable, 36–58 fold elevation of brain Li+ as the single does of LiCl was increased 4-fold. Moreover, the accumulation of brain lithium was slow during repeated administration of LiCl. Brain lithium did not correlate with changes in brain PI turnover either after a single or repeated doses. Thus, after a single does of LiCl the increases in brain Ins1P were much less than the decreases in brain inositol. Also, brain inositol was significantly decreased only with the high dose of LiCl whereas brain Ins1P accumulation was more prominent with the lower dose. Moreover, repeated daily doses of LiCl only transiently increased brain Ins1P at 1 and 7 d whereas inositol remained at control levels throughout the 14 d observation period. Lithium probably caused the transient decrease in brain inositol by inhibiting several enzymes, in addition to the inhibition of myo-inositol mono-phosphates, in the PI cycle. Moreover, a slow dampening down of PI turnover by lithium, possible via an inhibitory action on G-protein-coupling, may also explain the present findings.  相似文献   
97.
Synaptosomes isolated from the rat cerebral cortex were mixed with sonicated phospholipid vesicles and subjected to freezing-thawing to acquire giant proteoliposomes. Membranes of these giant proteoliposome could thus be studied using patch-clamp techniques. Single-channel currents were measured with the inside-out patch of the membrane, in KCl solutions. Three different potassium channels were detected and unit conductances were 15.1, 28.6 and 91.0 pS, respectively, in a symmetrical 150 mM KCl solution. All these channels are more permeable to potassium than to sodium ions, the permeability ratio being about 2:1. Tetraethylammonium ions blocked these channels. The gating of these potassium channels is independent of the membrane potential, Presumably, these channels play a role in the resting membrane potential of presynaptic nerve terminals.  相似文献   
98.
Summary The compartmentation of the phosphatidylethanolamine newly synthesized in brain microsomesin vitro either by base exchange or net synthesis has been studied, using difluorodinitrobenzene as a chemical probe. The experimental results demonstrate that in rat brain microsomes the phosphatidylethanolamine molecules synthesized by base exchange and the bulk membrane lipid belong to different pools. Ca2+ bound to microsomes seems to be involved in the maintenance of the compartmentation of phosphatidylethanolamine. In the presence of Ca2+ the newly synthesized phosphatidylethanolamine molecules react with difluorodinitrobenzene as though they are organized in clusters. After biosynthesisin vivo orin vitro through the cytidine pathway, the compartmentation of the newly formed phosphatidylethanolamine appears less marked than after the synthesis through base exchange.  相似文献   
99.
The present investigation using labeled pyruvate describes the regional distribution and kinetics of the monocarboxylic acid carrier at the blood-brain barrier of conscious rats. The experimental procedure involved the arterial injection of a single bolus of 200 microliter containing [1-14C]pyruvate, [3H]water, and varying concentrations of unlabeled pyruvate into the common carotid via an indwelling externalized catheter. The hemisphere ipsi-lateral to the injection and rostral to the midbrain was removed and dissected into five regions. A kinetic analysis revealed no significant regional differences in Km values with an overall average of 1.37 mM. However, there was regional variation in the density of the monocarboxylic acid carrier as indicated by varied levels of the kinetic constant Vmax. The cortex showed the highest Vmax value of 0.42 +/- 0.08 mumol/min/g whereas values for the caudate/putamen, thalamus/hypothalamus, and remaining portion of hemisphere ranged significantly lower at 0.22-0.27 mumol/min/g. The Vmax for the hippocampus was intermediate at 0.37 +/- 0.12 mumol/min/g. The nonsaturable carrier described kinetically by KD had an overall average of 0.034 ml/min/g. The present study confirms quantitatively previous results suggesting a variable regional distribution of the monocarboxylic acid carrier.  相似文献   
100.
Taurine Levels in Discrete Brain Nuclei of Rats   总被引:7,自引:1,他引:6  
Concentrations of taurine have been measured in 44 microdissected rat brain nuclei or areas. Taurine is ubiquitously present and distributed unevenly in the rat brain: the ratio of the highest (pyriform cortex) to lowest (midbrain reticular formation) concentrations is 4.7:1. High taurine levels were found in cerebral cortical areas, caudate-putamen, cerebellum, median eminence, and supraoptic nucleus. Acute pain stress reduced taurine levels in the hypothalamus and the lower brainstem nuclei but not in cortical areas. Increased locomotor and behavioral activities following a high dose of amphetamine elevated taurine concentrations significantly in the substantia nigra and locus ceruleus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号