首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2516篇
  免费   87篇
  国内免费   41篇
  2024年   3篇
  2023年   24篇
  2022年   46篇
  2021年   80篇
  2020年   64篇
  2019年   92篇
  2018年   73篇
  2017年   64篇
  2016年   77篇
  2015年   114篇
  2014年   215篇
  2013年   184篇
  2012年   119篇
  2011年   165篇
  2010年   99篇
  2009年   139篇
  2008年   146篇
  2007年   137篇
  2006年   110篇
  2005年   81篇
  2004年   71篇
  2003年   62篇
  2002年   35篇
  2001年   16篇
  2000年   24篇
  1999年   26篇
  1998年   28篇
  1997年   21篇
  1996年   30篇
  1995年   27篇
  1994年   31篇
  1993年   31篇
  1992年   21篇
  1991年   28篇
  1990年   18篇
  1989年   23篇
  1988年   10篇
  1987年   21篇
  1986年   13篇
  1985年   8篇
  1984年   10篇
  1983年   9篇
  1982年   16篇
  1981年   10篇
  1980年   4篇
  1979年   9篇
  1978年   4篇
  1977年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有2644条查询结果,搜索用时 15 毫秒
101.
Obesity is a predictor of diabetes and cardiovascular disease. One consequence of obesity is dyslipidemia characterized by high blood triglycerides. It has been proposed that oxidative stress, driven by utilization of lipids for energy, contributes to these diseases. The effects of oxidative stress are mitigated by an endogenous antioxidant enzyme network, but little is known about its response to high fat utilization. Our experiments used a multiplexed quantitative proteomics method to measure antioxidant enzyme expression in heart tissue in a mouse model of diet-induced obesity. This experiment showed a rapid and specific up-regulation of catalase protein, with subsequent assays showing increases in activity and mRNA. Catalase, traditionally considered a peroxisomal protein, was found to be present in cardiac mitochondria and significantly increased in content and activity during high fat feeding. These data, coupled with the fact that fatty acid oxidation enhances mitochondrial H2O2 production, suggest that a localized catalase increase is needed to consume excessive mitochondrial H2O2 produced by increased fat metabolism. To determine whether the catalase-specific response is a common feature of physiological conditions that increase blood triglycerides and fatty acid oxidation, we measured changes in antioxidant expression in fasted versus fed mice. Indeed, a similar specific catalase increase was observed in mice fasted for 24 h. Our findings suggest a fundamental metabolic process in which catalase expression is regulated to prevent damage while preserving an H2O2-mediated sensing of diet composition that appropriately adjusts insulin sensitivity in the short term as needed to prioritize lipid metabolism for complete utilization.  相似文献   
102.
103.
Maturity onset diabetes of the young (MODY) is an autosomal dominant disease. Despite extensive research, the mechanism by which a mutant MODY gene results in monogenic diabetes is not yet clear due to the inaccessibility of patient samples. Induced pluripotency and directed differentiation toward the pancreatic lineage are now viable and attractive methods to uncover the molecular mechanisms underlying MODY. Here we report, for the first time, the derivation of human induced pluripotent stem cells (hiPSCs) from patients with five types of MODY: MODY1 (HNF4A), MODY2 (GCK), MODY3 (HNF1A), MODY5 (HNF1B), and MODY8 (CEL) with a polycistronic lentiviral vector expressing a Cre-excisable human “stem cell cassette” containing the four reprogramming factors OCT4, KLF4, SOX2, and CMYC. These MODY-hiPSCs morphologically resemble human pluripotent stem cells (hPSCs), express pluripotency markers OCT4, SOX2, NANOG, SSEA-4, and TRA-1–60, give rise to derivatives of the three germ layers in a teratoma assay, and are karyotypically normal. Overall, our MODY-hiPSCs serve as invaluable tools to dissect the role of MODY genes in the development of pancreas and islet cells and to evaluate their significance in regulating beta cell function. This knowledge will aid future attempts aimed at deriving functional mature beta cells from hPSCs.  相似文献   
104.
We previously demonstrated that sphingosine kinase 1 (Sphk1) expression and activity are up-regulated by exogenous palmitate (PAL) in a skeletal muscle model system and in diet-induced obesity in mice; however, potential functions and in vivo relevance of this have not been addressed. Here, we aimed to determine the mechanism by which PAL regulates SphK1 in muscle, and to determine potential roles for its product, sphingosine-1-phosphate (S1P), in muscle biology in the context of obesity. Cloning and analysis of the mouse Sphk1 promoter revealed a peroxisome proliferator-activated receptor (PPAR) α cis-element that mediated activation of a reporter under control of the Sphk1 promoter; direct interaction of PPARα was demonstrated by chromatin immunoprecipitation. PAL treatment induced the proinflammatory cytokine interleukin (IL)-6 in a manner dependent on SphK1, and this was attenuated by inhibition of the sphingosine-1-phosphate receptor 3 (S1PR3). Diet-induced obesity in mice demonstrated that IL-6 expression in muscle, but not adipose tissue, increased in obesity, but this was attenuated in Sphk1−/− mice. Moreover, plasma IL-6 levels were significantly decreased in obese Sphk1−/− mice relative to obese wild type mice, and muscle, but not adipose tissue IL-6 signaling was activated. These data indicate that PPARα regulates Sphk1 expression in the context of fatty acid oversupply and links PAL to muscle IL-6 production. Moreover, this function of SphK1 in diet-induced obesity suggests a potential role for SphK1 in obesity-associated pathological outcomes.  相似文献   
105.
Angiotensin II (AngII), a peptide hormone released by adipocytes, can be catabolized by adipose angiotensin-converting enzyme 2 (ACE2) to form Ang(1–7). Co-expression of AngII receptors (AT1 and AT2) and Ang(1–7) receptors (Mas) in adipocytes implies the autocrine regulation of the local angiotensin system upon adipocyte functions, through yet unknown interactive mechanisms. In the present study, we reveal the adipogenic effects of Ang(1–7) through activation of Mas receptor and its subtle interplays with the antiadipogenic AngII-AT1 signaling pathways. Specifically, in human and 3T3-L1 preadipocytes, Ang(1–7)-Mas signaling promotes adipogenesis via activation of PI3K/Akt and inhibition of MAPK kinase/ERK pathways, and Ang(1–7)-Mas antagonizes the antiadipogenic effect of AngII-AT1 by inhibiting the AngII-AT1-triggered MAPK kinase/ERK pathway. The autocrine regulation of the AngII/AT1-ACE2-Ang(1–7)/Mas axis upon adipogenesis has also been revealed. This study suggests the importance of the local regulation of the delicately balanced angiotensin system upon adipogenesis and its potential as a novel therapeutic target for obesity and related metabolic disorders.  相似文献   
106.
107.
The role of serine/threonine protein phosphatase 5 (PP5) in the development of obesity and insulin resistance associated with high-fat diet-feeding (HFD) was examined using PP5-deficient mice (Ppp5c−/−). Despite similar caloric intake, Ppp5c−/− mice on HFD gained markedly less weight and did not accumulate visceral fat compared to wild-type littermates (Ppp5c+/+). On a control diet, Ppp5c−/− mice had markedly improved glucose control compared to Ppp5c+/+ mice, an effect diminished by HFD. However, even after 10 weeks of HFD glucose control in Ppp5c−/− mice was similar to that observed in Ppp5c+/+ mice on the control diet. Thus, PP5 deficiency confers protection against HFD-induced weight gain in mice.  相似文献   
108.
Deficits in satiation signaling during obesogenic feeding have been proposed to play a role in hyperphagia and weight gain in animals prone to become obese. However, whether this impaired signaling is due to high fat (HF) feeding or to their obese phenotype is still unknown. Therefore, in the current study, we examined the effects of CCK-8 (0.5, 1.0, 2.0, and 4.0 μg/kg) on suppression of food intake of HF-fed obese prone (OP) and resistant (OR) rats. Additionally, we determined the role of endogenous CCK in lipid-induced satiation by measuring plasma CCK levels following a lipid gavage, and tested the effect of pretreatment with devazepide, a CCK-1R antagonist on intragastric lipid-induced satiation. Finally, we examined CCK-1R mRNA levels in the nodose ganglia. We show that OP rats have reduced feeding responses to the low doses of exogenous CCK-8 compared to OR rats. Furthermore, OP rats exhibit deficits in endogenous CCK signaling, as pretreatment with devazepide failed to abolish the reduction in food intake following lipid gavage. These effects were associated with reduced plasma CCK after intragastric lipid in OP but not OR rats. Furthermore, HF feeding resulted in downregulation of CCK-1Rs in the nodose ganglia of OP rats. Collectively, these results demonstrate that HF feeding leads to impairments in lipid-induced CCK satiation signaling in obese-prone rats, potentially contributing to hyperphagia and weight gain.  相似文献   
109.
A new series of urea-based, 4-bicyclic heteroaryl-piperidine derivatives as potent SCD1 inhibitors is described. The structure–activity relationships focused on bicyclic heteroarenes and aminothiazole–urea portions are discussed. A trend of dose-dependent decrease in body weight gain in diet-induced obese (DIO) mice is also demonstrated.  相似文献   
110.
This Letter describes the asymmetric synthesis of the four stereoisomers (8a8d) of a potent and highly selective histamine H3 receptor (H3R) antagonist, 5-fluoro-2-methyl-N-[2-methyl-4-(2-methyl[1,3′]bipyrrolidinyl-1′-yl) phenyl]benzamide (1). The physico-chemical properties, in vitro H3R affinities and ADME of 8a8d were determined. Stereoisomer 8c (2S,3′S) displayed superior in vitro H3R affinity over other three stereoisomers and was selected for further profiling in in vivo PK and drug safety. Compound 8c exhibited excellent PK properties with high exposure, desired brain to plasma ratio and reasonable brain half life. However, all stereoisomers showed similar unwanted hERG affinities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号