首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21919篇
  免费   1734篇
  国内免费   2491篇
  2024年   40篇
  2023年   399篇
  2022年   422篇
  2021年   724篇
  2020年   703篇
  2019年   884篇
  2018年   862篇
  2017年   696篇
  2016年   727篇
  2015年   831篇
  2014年   1262篇
  2013年   1667篇
  2012年   938篇
  2011年   1065篇
  2010年   799篇
  2009年   1121篇
  2008年   1116篇
  2007年   1102篇
  2006年   1003篇
  2005年   975篇
  2004年   869篇
  2003年   802篇
  2002年   697篇
  2001年   534篇
  2000年   477篇
  1999年   440篇
  1998年   466篇
  1997年   344篇
  1996年   400篇
  1995年   346篇
  1994年   355篇
  1993年   298篇
  1992年   279篇
  1991年   273篇
  1990年   242篇
  1989年   191篇
  1988年   159篇
  1987年   155篇
  1986年   151篇
  1985年   189篇
  1984年   200篇
  1983年   134篇
  1982年   177篇
  1981年   141篇
  1980年   99篇
  1979年   88篇
  1978年   59篇
  1977年   46篇
  1976年   35篇
  1973年   47篇
排序方式: 共有10000条查询结果,搜索用时 593 毫秒
991.
蛋白质剪接技术为在蛋白质水平上直接对蛋白质进行修饰和加工提供了一种全新的解决方案,因而在蛋白质工程及相关领域具有非常广阔的应用前景。现阶段,大部分天然的蛋白质内含子在异源蛋白质中剪接活性非常低,极大限制了蛋白质内含子的开发和应用。为了开发一个可以同时对蛋白质内含子通用性和剪接活性进行筛选的系统,利用Bsa I限制性内切酶识别位点和切割不重合的特性,将Ter ThyX内含子(不含外显子序列)插入到卡那霉素抗性蛋白基因的多个位点。并且摒弃了以往需要结合天然外显子以实现剪接的方法,可以同时对蛋白质内含子的剪接活性和通用性进行筛选。Western blot结果和卡那霉素平板生长结果表明,通过卡那霉素筛选系统可以精确的将蛋白质内含子剪接反应与卡那霉素抗性结合起来,仅从卡那霉素平板上的菌落生长情况即可完成蛋白质内含子剪接活性阳性突变的筛选,是一个快速,稳定的定向进化筛选系统。  相似文献   
992.
目的:建立荧光素酶标记的人鼻咽癌细胞裸鼠模型,活体成像系统监测肿瘤的生长并与肿瘤的体积进行对比。方法:构建表达荧光素酶基因2(1uc2)的慢病毒载体,与辅助质粒共转染293T细胞以制备慢病毒,感染人鼻咽癌SUNEl细胞后经嘌呤霉素筛选获得表达luc2的细胞株。活体成像设备体外检测不同数量细胞的发光强度,最后以5×10 6个细胞皮下接种BALB/cnu/nu裸鼠,活体成像系统动态记录接种后肿瘤的信号并与肿瘤的体积对比。结果:成功构建慢病毒表达质粒pLenti.1uc2并包装出慢病毒颗粒,病毒感染后嘌呤霉素筛选6天得到鼻咽癌细胞株SUNEl一luc2。细胞株传代后有稳定的发光强度,且经活体检测的每秒光子数与细胞数成正相关(R2=0.96);活体成像观察发现裸鼠接种第2天接种部位的发光强度就达到3-2×10^8,而且成瘤过程中发光强度的变化与肿瘤大小一致。结论:成功构建适用于活体成像的人鼻咽癌SUNEl细胞的裸鼠成瘤模型,该模型从细胞接种开始即可有效动态监测鼻咽癌皮下瘤的生长及转移,从而为鼻咽癌的成瘤机制及药物干预研究提供一个新的手段。  相似文献   
993.
The green Cu-NirK from Haloferax mediterranei (Cu-NirK) has been expressed, refolded and retrieved as a trimeric enzyme using an expression method developed for halophilic Archaea. This method utilizes Haloferax volcanii as a halophilic host and an expression vector with a constitutive and strong promoter. The enzymatic activity of recombinant Cu-NirK was detected in both cellular fractions (cytoplasmic fraction and membranes) and in the culture media. The characterization of the enzyme isolated from the cytoplasmic fraction as well as the culture media revealed important differences in the primary structure of both forms indicating that Hfx. mediterranei could carry out a maturation and exportation process within the cell before the protein is exported to the S-layer. Several conserved signals found in Cu-NirK from Hfx. mediterranei sequence indicate that these processes are closely related to the Tat system. Furthermore, the N-terminal sequence of the two Cu-NirK subunits constituting different isoforms revealed that translation of this protein could begin at two different points, identifying two possible start codons. The hypothesis proposed in this work for halophilic Cu-NirK processing and exportation via the Tat system represents the first approximation of this mechanism in the Halobacteriaceae family and in Prokarya in general.  相似文献   
994.
Emerging lines of evidence have shown that blockade of ubiquitin-proteasome system (UPS) activates autophagy. The molecular players that regulate the relationship between them remain to be elucidated. Bcl-2 associated athanogene 3 (BAG3) is a member of the BAG co-chaperone family that regulates the ATPase activity of heat shock protein 70 (HSP70) chaperone family. Studies on BAG3 have demonstrated that it plays multiple roles in physiological and pathological processes, including antiapoptotic activity, signal transduction, regulatory role in virus infection, cell adhesion and migration. Recent studies have attracted much attention on its role in initiation of autophagy. The current study, for the first time, demonstrates that proteasome inhibitors elicit noncanonical autophagy, which was not suppressed by inhibitors of class III phosphatidylinositol 3-kinase (PtdIns3K) or shRNA against Beclin 1 (BECN1). In addition, we demonstrate that BAG3 is ascribed to activation of autophagy elicited by proteasome inhibitors and MAPK8/9/10 (also known as JNK1/2/3 respectively) activation is also implicated via upregulation of BAG3. Moreover, we found that noncanonical autophagy mediated by BAG3 suppresses responsiveness of HepG2 cells to proteasome inhibitors.  相似文献   
995.
996.
Parkinson disease (PD) is a multifactorial neurodegenerative disorder with high incidence in the elderly, where environmental and genetic factors are involved in etiology. In addition, epigenetic mechanisms, including deregulation of DNA methylation have been recently associated to PD. As accurate diagnosis cannot be achieved pre-mortem, identification of early pathological changes is crucial to enable therapeutic interventions before major neuropathological damage occurs. Here we investigated genome-wide DNA methylation in brain and blood samples from PD patients and observed a distinctive pattern of methylation involving many genes previously associated to PD, therefore supporting the role of epigenetic alterations as a molecular mechanism in neurodegeneration. Importantly, we identified concordant methylation alterations in brain and blood, suggesting that blood might hold promise as a surrogate for brain tissue to detect DNA methylation in PD and as a source for biomarker discovery.  相似文献   
997.
Previous studies have shown that Sox3 is expressed in nascent neuroprogenitor cells and is functionally required in mammals for development of the dorsal telencephalon and hypothalamus. However, Sox3 expression during embryonic and adult neurogenesis has not been examined in detail. Using a SOX3-specific antibody, we show that murine SOX3 expression is maintained throughout telencephalic neurogenesis and is restricted to progenitor cells with neuroepithelial and radial glial morphologies. We also demonstrate that SOX3 is expressed within the adult neurogenic regions and is coexpressed extensively with the neural stem cell marker SOX2 indicating that it is a lifelong marker of neuroprogenitor cells. In contrast to the telencephalon, Sox3 expression within the developing hypothalamus is upregulated in developing neurons and is maintained in a subset of differentiated hypothalamic cells through to adulthood. Together, these data show that Sox3 regulation is region-specific, consistent with it playing distinct biological roles in the dorsal telencephalon and hypothalamus.  相似文献   
998.
《Autophagy》2013,9(1):166-182
The nucleotide-binding domain, leucine-rich repeat containing family caspase recruitment domain containing 4 (NLRC4) inflammasome can be activated by pathogenic bacteria via products translocated through the microbial type III secretion apparatus (T3SS). Recent work has shown that activation of the NLRP3 inflammasome is downregulated by autophagy, but the influence of autophagy on NLRC4 activation is unclear. We set out to determine how autophagy might influence this process, using the bacterium Pseudomonas aeruginosa, which activates the NLRC4 inflammasome via its T3SS. Infection resulted in T3SS-dependent mitochondrial damage with increased production of reactive oxygen intermediates and release of mitochondrial DNA. Inhibiting mitochondrial reactive oxygen release or degrading intracellular mitochondrial DNA abrogated NLRC4 inflammasome activation. Moreover, macrophages lacking mitochondria failed to activate NLRC4 following infection. Removal of damaged mitochondria by autophagy significantly attenuated NLRC4 inflammasome activation. Mitochondrial DNA bound specifically to NLRC4 immunoprecipitates and transfection of mitochondrial DNA directly activated the NLRC4 inflammasome; oxidation of the DNA enhanced this effect. Manipulation of autophagy altered the degree of inflammasome activation and inflammation in an in vivo model of P. aeruginosa infection. Our results reveal a novel mechanism contributing to NLRC4 activation by P. aeruginosa via mitochondrial damage and release of mitochondrial DNA triggered by the bacterial T3SS that is downregulated by autophagy.  相似文献   
999.
《Epigenetics》2013,8(12):1588-1595
DNA methylation is responsible for regulating gene expression and cellular differentiation and for maintaining genomic stability during normal human development. Furthermore, it plays a significant role in the regulation of hematopoiesis. In order to elucidate the influence of DNA methylation during B-cell development, genome-wide DNA methylation status of pro-B, pre-BI, pre-BII, and naïve-B-cells isolated from human umbilical cord blood was determined using the methylated CpG island recovery assay followed by next generation sequencing. On average, 182–200 million sequences were generated for each precursor B-cell subset in 10 biological replicates. An overall decrease in methylation was observed during the transition from pro-B to pre-BI, whereas no differential methylation was observed in the pre-BI to pre-BII transition or in the pre-BII to naïve B-cell transition. Most of the methylated regions were located within intergenic and intronic regions not present in a CpG island context. Putative novel enhancers were identified in these regions that were differentially methylated between pro-B and pre-BI cells. The genome-wide methylation profiles are publically available and may be used to gain a better understanding of the involvement of atypical DNA methylation in the pathogenesis of malignancies associated with precursor B-cells.  相似文献   
1000.
Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20 mM and 15 mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram + bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a kcat/KM value of 1.2 × 104 M− 1 s− 1. It also exhibited weak phosphatase activity with a kcat/KM value of 2.7 × 10− 4 M− 1 s− 1. The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural–functional characterization of a thermophilic arsenate reductase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号