首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   0篇
  2021年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2011年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1989年   5篇
  1987年   5篇
  1986年   5篇
  1985年   2篇
  1984年   9篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
81.
The presence of the catecholamine synthetic enzyme, phenylethanolamine N-methyl transferase (PNMT), has been detected in the expansor secundariorum, a smooth muscle of the avian wing. The concentration of the enzyme was estimated over a 10-week time course from 17 days incubation to 9 weeks posthatch and found to increase rapidly up until hatch in parallel with dopamine beta-hydroxylase activity, but then to fall precipitously to very low levels. The time course of the initial increase in activity corresponds to the presence of ingrowing sympathetic nerve fibres, and denervation of the expansor results in loss of greater than 80% of the PNMT activity. It is concluded that during the period of innervation the growing nerves contain the enzyme PNMT and therefore have the capacity to synthesize adrenaline, but that shortly after innervation is complete the capacity to synthesize adrenaline is lost. Several alternate mechanisms are proposed to explain the observations.  相似文献   
82.
Abstract: We studied the effects of denervation and reinnervation of the rat extensor digitorum longus muscle (EDL) on the oxidation of [6-14C]glucose to 14CO2. The rate of 14CO2 production decreased dramatically following denervation, and the decrease became significant 20 days after nerve section. Prior to day 20, changes apparently reflected the decline of muscle mass. Decreased 14CO2 production was due to reduced capacity of the enzymatic system (apparent Vmax); there was no change in apparent affinity for glucose (apparent K m). Mixing experiments revealed that the loss of oxidative capacity following denervation is not caused by production of soluble inhibitors by degenerating muscle. Oxidative metabolism, as measured by 14CO2 evolution, recovered during reinnervation. Surprisingly, the specific activity in reinnervated muscles displayed an "overshoot" of approximately 50%, which returned to control by day 60, possibly reflecting increased energy demand by the growing muscle. The time-course of the denervation-mediated change indicates that altered oxidative capacity is secondary to events that initiate denervation changes in muscle. Nevertheless, diminished oxidative capacity may be of considerable metabolic significance in denervated muscle.  相似文献   
83.
The levels of enkephalin-containing polypeptides (ECPs) in the adrenal glands of normal tensive rats (WKY) and spontaneously hypertensive rats (SHR) were compared. Innervated and denervated adrenals from both types of rats showed very similar levels of ECPs. The only difference observed was a small increase in the 18 kdal ECP and a concomitant decrease in the 12 kdal and 5.3 kdal ECPs in the innervated SHR rat adrenal gland. From these data it appears that the adrenal ECPs are not a major contributor to hypertension in the SHR rat nor does hypertension, at this age, affect the ECP levels.  相似文献   
84.
A sensitive enzyme-linked immunosorbent assay (ELISA) for nerve growth factor (NGF) has been developed. The sensitivity of this assay (0.1 pg/well) permits the quantification of endogenous immunoreactive NGF in the peripheral nervous system and the CNS. Studies on the regulatory mechanisms involved in NGF production indicate that, in addition to neurally mediated mechanisms, other stimuli, e.g., inflammation, significantly contribute to NGF production.  相似文献   
85.
In skeletal muscles, calcitonin gene-related peptide (CGRP) released from motor nerve terminals and humoral catecholamines stimulate adenylate cyclase (AC) and enhance muscle contraction. The effects of denervation and treatment with reserpine on twitch contraction and the AC system in rat diaphragm were investigated. The basal levels of twitch contraction and AC activity of the diaphragm of rats were both increased 2 weeks after phrenic nerve denervation but were not altered by treatment with reserpine. Reserpine treatment provoked supersensitivity of AC to isoproterenol, without affecting the response to CGRP. On the other hand, denervation decreased the activation of AC and enhancement of twitch contraction by CGRP, without affecting the responses to isoproterenol. These data suggest that denervation causes up-regulation of AC as a result of loss of CGRP release from nerve terminal and that depletion of catecholamines by reserpine treatment supersensitizes the responses at the beta-adrenoceptor level. Thus, nervous and humoral factors regulate the AC system in striated muscle by different mechanisms.  相似文献   
86.
Summary Changes of muscle weights, fiber diameters and ultrastructure were studied in the slow anterior latissimus dorsi (ALD) and in the fast posterior latissimus dorsi (PLD) of the chick three weeks after denervation and tenotomy, and after combined denervation and tenotomy of the two muscles.The slow ALD muscle becomes hypertrophic after denervation (Feng, Jung and Wu, 1962). Three weeks after nerve section, wet weights of ALD muscles are increased by 60% and fiber diameters become by 30% larger than those of contralateral control muscles. In spite of this hypertrophy, degenerative changes are seen in the ultrastructure, similar to those described in denervated atrophic muscles. Areas of dedifferentiation with autophagic vacuoles and aggregates of tubules are found in superficial layers of some fibers. Disintegration of Z lines and filaments along one or two sarcomeres occurs in a number of myofibrils, especially in muscles of young animals.In contrast to denervation alone, simultaneous denervation and tenotomy of the ALD muscles results in atrophy. Decrease of muscle weights and reduction of fiber diameters are similar as after tenotomy; in both cases muscle fibers waste by degeneration and atrophy of myofibrils.The fast PLD muscles underwent extensive atrophy in all three series of experiments. Corresponding atrophic and degenerative changes of ultrastructure were found in all instances.The authors wish to acknowledge gratefully the skillful technical assistance of Mrs. M. Sobotková and Ing. M. Doubek, and editorial assistance of Miss Virginia Hamilton.  相似文献   
87.
To differentiate the effect of muscle contractile activity from that of motor nerve on oxidative processes in type I muscle, oxidative processes were studied in muscle after immobilization and after denervation. The two processes led to similar atrophy of muscle weight and of the mean diameter of muscle fibers. Disuse of soleus muscle (type I) did not affect rates of oxidation of 14C-labeled substrates although these were reduced by disuse of the vastus lateralis (type II). Disuse of the soleus did not affect activities of several mitochondrial enzymes assayed by histochemical or biochemical methods. However, denervation of the soleus did lead to a fall in metabolic rates and enzyme activities. The activity of 3-hydroxybutyrate dehydrogenase fell more than did the activities of succinic dehydrogenase, lipoamide dehydrogenase, or cytochrome-c oxidase in both homogenates and in mitochondrial fractions. These results suggest nerve may regulate mitochondrial enzymes in type I muscle. The mechanism appears to be different from that which regulates oxidative processes in type II muscle.  相似文献   
88.
89.
Wnts are secreted proteins with functions in differentiation, development and cell proliferation. Wnt signaling has also been implicated in neuromuscular junction formation and may function in synaptic plasticity in the adult as well. Secreted frizzled-related proteins (Sfrps) such as Sfrp1 can function as inhibitors of Wnt signaling. In the present study a potential role of Wnt signaling in denervation was examined by comparing the expression levels of Sfrp1 and key proteins in the canonical Wnt pathway, Dishevelled, glycogen synthase kinase 3β and β-catenin, in innervated and denervated rodent skeletal muscle. Sfrp1 mRNA and immunoreactivity were found to be up-regulated in mouse hemidiaphragm muscle following denervation. Immunoreactivity, detected by Western blots, and mRNA, detected by Northern blots, were both expressed in extrasynaptic as well as perisynaptic parts of the denervated muscle. Immunoreactivity on tissue sections was, however, found to be concentrated postsynaptically at neuromuscular junctions. Using β-catenin levels as a readout for canonical Wnt signaling no evidence for decreased canonical Wnt signaling was obtained in denervated muscle. A role for Sfrp1 in denervated muscle, other than interfering with canonical Wnt signaling, is discussed.  相似文献   
90.
Neural- and endocrine mechanisms controlling degeneration of a dorsal longitudinal flight muscle, M112a, have been studied in adult Gryllus bimaculatus (Orthoptera: Gryllidae). Decapitation completely prevented muscle degeneration. Implantation of a pair of corpora allata or injection of juvenile hormone III into decapitated crickets caused muscle degeneration. Denervation of M112a resulted in reduction of muscle mass compared with that in sham-operated crickets. Denervation of M112a in decapitated crickets, however, did not affect muscle mass. Birefringence and ultrastructure of M112a showed an obvious regional difference in the onset of degeneration. Fibrillar structures of M112a always disappeared from the ventral to dorsal part. Distribution of axon terminals of motor neurons and mechanical responses to the motor nerve stimuli showed that M112a is composed of five motor units with similar twitch properties. When M112a was fully denervated, regional differences in degeneration disappeared. Partial denervation resulted in denervated muscle fibers losing birefringence earlier than innervated fibers. These results suggest that juvenile hormone causes breakdown of flight muscles, and neural factors control degeneration of flight muscles to some extent under the presence of the juvenile hormone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号