首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   3篇
  国内免费   16篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2019年   3篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   6篇
  2012年   5篇
  2011年   1篇
  2010年   4篇
  2009年   12篇
  2008年   9篇
  2007年   12篇
  2006年   11篇
  2005年   18篇
  2004年   11篇
  2003年   7篇
  2002年   9篇
  2001年   5篇
  2000年   3篇
  1999年   19篇
  1998年   11篇
  1997年   8篇
  1996年   5篇
  1995年   11篇
  1994年   4篇
  1993年   10篇
  1992年   10篇
  1991年   6篇
  1990年   7篇
  1989年   5篇
  1988年   10篇
  1987年   9篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
81.
Summary.  The nucleotide sequence of cDNA that encodes hamster d-amino-acid oxidase (DAO) was determined. The cDNA consisted of 1,590 nucleotides and a poly(A) tail. It had an open reading frame for a protein consisting of 346 amino acid residues. The number of the amino acid residues is the same as that of the rat DAO. However, the hamster DAO has one residue more than mouse DAO and one residue less than human, pig, rabbit, and guinea pig DAOs. Amino acid sequence of the hamster DAO was highly similar to those of mouse and rat DAOs: 89% and 88% of the amino acid residues were identical between the hamster and mouse DAOs and between the hamster and rat DAOs, respectively. The homology was slightly less between the hamster DAO and the human (81%), pig (78%), rabbit (78%), or guinea pig DAO (82%). It has been proposed that the mouse and rat DAOs lack an amino acid residue corresponding to the 25th residue of the DAOs of other mammals. However, a detailed comparison of the amino acid sequences as well as the underlying nucleotide sequences by inclusion of the hamster ones revealed that the rodent DAOs does not lack the 25th, but the 27th residue. Received January 16, 2002 Accepted June 20, 2002 Published online November 14, 2002 Authors' address: Dr. Ryuichi Konno, Department of Microbiology, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan, Fax: +81-282-86-5616  相似文献   
82.
Abundant evidence has been gathered to suggest that mitochondrial DNA (mtDNA) sustains many more mutations and greater oxidative damage than does nuclear DNA in human tissues. Uremic patients are subject to a state of enhanced oxidative stress due to excess production of oxidants and a defective antioxidant defense system. This study was conducted to investigate mtDNA mutations and oxidative damage in skeletal muscle of patients with chronic uremia. Results showed that large-scale deletions between nucleotide position (np) 7,900 and 16,300 of mtDNA occurred at a high frequency in muscle of uremic patients. Among them, the 4,977-bp deletion (mtDNA4977) was the most frequent and most abundant large-scale mtDNA deletion in uremic skeletal muscle. The proportion of mtDNA4977 was found to correlate positively with the level of 8-hydroxy 2-deoxyguanosine (8-OHdG) in the total DNA of skeletal muscle (r=0.62, p<0.05). Using long-range PCR and DNA sequencing, we identified and characterized multiple deletions of mtDNA in skeletal muscle of 16 of 19 uremic patients examined. The 8,041-bp deletion, which occurred between np 8035 and 16,075, was flanked by a 5-bp direct repeat of 5-CCCAT-3. Some of the deletions were found in more than 1 patient. On the other hand, we found that the mean 8-OHdG/105 dG ratio in the total cellular DNA of muscle of uremic patients was significantly higher than that of the controls (182.7 ± 63.6 vs. 50.9 ± 21.5, p=0.05). In addition, the mean 8-OHdG/105 dG ratio in muscle mtDNA of uremic patients was significantly higher than that in nuclear DNA (344.0 ± 56.9 vs. 146.3 ± 95.8, p=0.001). Moreover, we found that the average content of lipid peroxides in mitochondrial membranes of skeletal muscle of uremic patients was significantly higher than that of age-matched healthy subjects (23.76 ± 6.06 vs. 7.67 ± 0.95 nmol/mg protein; p<0.05). The average content of protein carbonyls in the mitochondrial membranes prepared from uremic skeletal muscles was significantly higher than that in normal controls (24.90 ± 4.00 vs. 14.48 ± 1.13 nmol/mg protein; p<0.05). Taken together, these findings suggest that chronic uremia leads to mtDNA mutations together with enhanced oxidative damage to DNA, lipids, and proteins of mitochondria in skeletal muscle, which may contribute to the impairment of mitochondrial bioenergetic function and to skeletal myopathy commonly seen in uremic patients.  相似文献   
83.
In our previous studies, we have shown the mutagenicity of bleomycin (BLM) at the nuclear hprt locus. In the present study we have analyzed mutagenic effects of BLM in mitochondrial DNA (mtDNA) using short extension-PCR (SE-PCR) method for detection of low-copy deletions. Fisher 344 rats were treated with a single dose of BLM and total DNA preparations from splenic lymphocytes were processed in SE-PCR assay. Spontaneous deletions were typically flanked by direct repeats (78.5%), while the in BLM-treated group, direct repeats were found in only 46.6% of breakpoints. The ratio between deletions based on direct repeats and random sequence deletions changed from 3.67 in control group to 0.87 in BLM-treated animals, which corresponds to an approximate 1.7-fold increase in the deletion mutation frequency. Furthermore, 62.5% of deletions not flanked by direct repeats in the treated group contained cleavage sites for BLM. The localization of breakpoints was not entirely random. We have found four clusters containing deletions from both groups indicative of deletion hot spots. The results indicate that BLM exposure may be associated with the induction of mtDNA mutations, and suggest the utility of SE-PCR method for evaluating drug-induced genotoxicity.  相似文献   
84.
In vivo expression technology (IVET) has resulted in the isolation of more than 100 Salmonella typhimurium genes that are induced during infection. Many of these in vivo induced (ivi) genes, as well as other virulence genes, are clustered in regions of the chromosome that are specific for Salmonella and are not present in Escherichia coli (e.g., pathogenicity islands). It would be desirable to be able to delete such putative virulence regions of the chromosome, and if the deletion removes genes that play a role in pathogenesis subsequent efforts can then be focused on individual genes that reside within that region. We therefore have developed a strategy for constructing chromosomal deletions which are not limited in size, have defined endpoints with a selectable marker at the joint point, and are not dependent on prior knowledge of sequences contained within the deleted region. Such deletion strategies can be applied to almost any bacterium with homologous recombination and to plasmid-based mutational systems where homologous recombination is not desired or feasible. Received: 6 October 1997 / Accepted: 30 December 1997  相似文献   
85.
In Escherichia coli, adenylate cyclase activity is regulated by phosphorylated EnzymeIIAGlc, a component of the phosphotransferase system for glucose transport. In strains deficient in EnzymeIIAGlc, CAMP levels are very low. Adenylate cyclase containing the D414N substitution produces a low level of cAMP and it has been proposed that D414 may be involved in the process leading to activation by EnzymeIIAGlc. In this work, spontaneous secondary mutants producing large amounts of cAMP in strains deficient in EnzymeIIAGlc were obtained. The secondary mutations were all deletions located in the cya gene around the D414N mutation, generating adenylate cyclases truncated at the carboxyl end. Among them, a 48 kDa protein (half the size of wild-type adenylate cyclase) was shown to produce ten times more cAMP than wild-type adenylate cyclase in strains deficient in EnzymeIIAGlc. In addition, this protein was not regulated in strains grown on glucose and diauxic growth was abolished. This allowed the definition of a catalytic domain that is not regulated by the phosphotransferase system and produces levels of cAMP similar to that of regulated wild-type adenylate cyclase in wild-type strains grown in the absence of glucose. Further analysis allowed the characterization of the COOH-terminal regulatory domain, which is proposed to be inhibitory to the activity of the catalytic domain.  相似文献   
86.
Genetic instability in Streptomyces species often involves large deletions sometimes accompanied by DNA amplification. Two such systems in Streptomyces lividans 66 involve the production of mutants sensitive to chloramphenicol and the production of mutants resistant to the galactose analogue 2-deoxygalactose, respectively. Overlapping cosmids were isolated that span the ca. 1 Mb region between the two amplifiable regions. The structure of the region was confirmed by restriction mapping using the rarely cutting enzymes AseI, BfrI and DraI and pulsed-field gel electrophoresis. The region contains a non-clonable gap flanked by inverted repeats; the structure is consistent with the presence of a physical gap, i.e. a linear chromosome.  相似文献   
87.
88.
IS117, the 2.6 kb mini-circle of Streptomyces coelicolor A3(2), is a transposable element previously shown to be integrated into two distant sites in the chromosome. When introduced into S. lividans, IS117 integrates into one preferred chromosomal site, but when this site was artificially deleted, IS117 integrated into many secondary sites. Nucleotide sequence analysis of several secondary integration sites revealed varying degrees of similarity with the preferred site, but no consensus sequence. Nevertheless, sites more similar to the preferred site tended to be occupied more often than those that are less similar. Insertion of IS117 into secondary sites in the chromosome of S. lividans sometimes mediated chromosomal rearrangements. It was shown that some strains containing IS117 integrated into secondary sites had suffered deletions of chromosomal DNA. Deletions were adjacent to the inserted element and were at least several kilobases long. The proposed model implicates homologous recombination between IS117 copies integrated into two different secondary sites in the same chromosome as a cause of the deletions.  相似文献   
89.
gdhA1 is a spontaneous mutant of Escherichia coli that causes complete loss of activity of the NADP-specific glutamate dehydrogenase (GDH) encoded by the gdhA gene. The gdhA1 mutational site has been identified by recombinational mapping, polymerase chain reaction (PCR) amplification and DNA sequencing, as an A to G transition at nucleotide 274 of the gdhA coding sequence, resulting in an amino acid change of lysine 92 to glutamic acid. The mutant enzyme forms hybrid hexamers with a wild-type GDH, providing a useful system for analysis of conformational integrity of mutational variants.  相似文献   
90.
Summary A novel deletion derivative, kal, of the kalilo senescence plasmid from Neurospora intermedia, was recovered from a culture treated with chloramphenicol. The deletion derivative exists in mitochondria as two different, equally abundant forms: a 2.8 kb duplex DNA molecule kal-2.8) and a 1.4 kb hairpin form kal-1.4). The kal-2.8 plasmid contains the 1366 by terminal inverted repeats and a partially duplicated 102 by segment of the unique sequence of the 8.6 kb kalilo plasmid. In contrast, the kal-1.4 hairpin plasmid appears to result from the folding of single strands that are generated during the replication of kal-2.8. Both forms of kal have covalently linked terminal proteins. Sequence analysis suggests that kal was generated either by slippage of the tip of a growing strand during the replication of kalilo, or by illegitimate recombination between two copies of the plasmid at non-homologous palindromic sequences that might form cruciform structures. In either case, the deletion process was mediated at least in part by an inverted repeat of 5 by in the unique region of kalilo. Since the terminal segments of kalilo DNA that are implicated in plasmid integration might also form cruciform structures, it is possible, but improbable, that the process that generated the first kal molecule is related to that which mediates integration of the plasmid into mitochondrial DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号