首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1420篇
  免费   31篇
  国内免费   23篇
  2023年   14篇
  2022年   21篇
  2021年   20篇
  2020年   30篇
  2019年   34篇
  2018年   37篇
  2017年   31篇
  2016年   36篇
  2015年   22篇
  2014年   33篇
  2013年   381篇
  2012年   16篇
  2011年   19篇
  2010年   15篇
  2009年   27篇
  2008年   45篇
  2007年   55篇
  2006年   45篇
  2005年   26篇
  2004年   42篇
  2003年   42篇
  2002年   35篇
  2001年   38篇
  2000年   39篇
  1999年   25篇
  1998年   19篇
  1997年   13篇
  1996年   30篇
  1995年   24篇
  1994年   16篇
  1993年   22篇
  1992年   25篇
  1991年   22篇
  1990年   22篇
  1989年   20篇
  1988年   16篇
  1987年   19篇
  1986年   13篇
  1985年   16篇
  1984年   19篇
  1983年   14篇
  1982年   11篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1967年   1篇
  1966年   2篇
排序方式: 共有1474条查询结果,搜索用时 31 毫秒
31.
Glial cells are the most abundant cells in the central nervous system and play crucial roles in neural development, homeostasis, immunity, and conductivity. Over the past few decades, glial cell activity in mammals has been linked to circadian rhythms, the 24-h chronobiological clocks that regulate many physiological processes. Indeed, glial cells rhythmically express clock genes that cell-autonomously regulate glial function. In addition, recent findings in rodents have revealed that disruption of the glial molecular clock could impact the entire organism. In this review, we discuss the impact of circadian rhythms on the function of the three major glial cell types – astrocytes, microglia, and oligodendrocytes – across different locations within the central nervous system. We also review recent evidence uncovering the impact of glial cells on the body's circadian rhythm. Together, this sheds new light on the involvement of glial clock machinery in various diseases.  相似文献   
32.
33.
A role for circadian neuroendocrine rhythms in the age-related development of obesity and insulin resistance was investigated in the male Sprague-Dawley rat. The phases and amplitudes of the plasma rhythms of several metabolic hormones (i.e. corticosterone, prolactin, insulin, and triiodothyronine) differed in lean, insulin-sensitive (3-week-old rats). insulin-resistant (8-week-old rats) and obese, insulin-resistant (44-week-old rats) animals. Simulation of the daily rhythms of endogenous corticosterone and prolactin by daily injections of the hormones at times corresponding to the peak levels found in 3-week-old rats reversed age-related increases in insulin resistance and body fat in older (5-6-month-old) rats. Ten such daily injections of corticosterone and prolactin in 12-14-week-old rats produced long-term reductions in body fat stores (30%). plasma insulin concentration (40%'). and insulin resistance (60%) (determined by a glucose tolerance test) measured 11-14 weeks after the treatment. Alterations in circadian neuroendocrine rhythms may account for age-related changes in carbohydrate and lipid metabolism in the male Sprague-Dawley rat, and resetting of these rhythms by appropriately timed daily injections of corticosterone and prolactin may help maintain metabolism characteristic of younger animals.  相似文献   
34.
在25℃不同日粮水平(饥饿─4%体重/d)条件下,采用封闭式呼吸仪测定了31尾鲇鱼(体重72.9─133.3g)的日总代谢率,然后,将鱼限制在呼吸室中的限动笼内测定了其中20尾鲇鱼的静止日总代谢率,并计算出了鲇鱼的特殊动力作用(SDA)和活动代谢率。日总代谢率和活动代谢率都随日粮水平的升高呈“V”形变化,分别在约1%和2%体重/d的日粮水平时最低,SDA的能量支出占摄入能量的22.14%。  相似文献   
35.
Dennis H. Greer 《Planta》1995,197(1):31-38
Bean (Phaseolus vulgaris L.) plants were grown at two light periods of 8 and 13 h with a similar photon flux density (PFD) giving a daily photon receipt (DPR) of 17.9 and 38.2 mol · m–2, respectively. Shoot growth and leaf area development were followed at regular intervals and diurnal whole-plant photosynthesis measured. Single mature trifoliate leaves were exposed to photoinhibitory treatments at PFDs of 800 and 1400 mol · m–2 · s–1 and at temperatures of 12 and 20°C. Chlorophyll fluorescence and photon yields were measured at regular intervals throughout each treatment. Plants grown in 13 h had significantly greater leaf areas than those grown in 8 h. There were no differences in maximum rates of photosynthesis, photon yields and only minor but significant differences in Fv/Fm for plants in the two treatments, showing photosynthetic characteristics were dependent on PFD but not DPR. A significant decline in photosynthesis and Fv/Fm occurred over the 13-h but little change in photosynthesis for plants in the 8 h, indicating some feedback inhibition of photosynthesis was occurring. Plants grown in 8 h were consistently more susceptible to photoinhibition of photosynthesis at all treatments than 13-h plants. Nevertheless, photoinhibition was exacerbated by increases in PFD, and by decreases in temperature for leaves from both treatments. However, for plants from the 8-h day, exposing leaves to 12°C and 1400 mol · m–2 · s–1 caused photo-oxidation and severe bleaching but no visible damage on leaves from 13-h-grown plants. Closure of the photosystem II reaction-centre pool was partially correlated with increasing extents of photoinhibition but the relationship was similar for plants from both treatments. There remains no clear explanation for their wide differences in susceptibility to photoinhibition.Abbreviations and Symbols DPR daily photon receipt - F0 and Fm initial and maximal fluorescence - Fv/Fm fluorescence ratio in dark-treated leaves - F/Fm intrinsic efficiency of PSII during illumination - PFD photon flux density - i photon yield (incident basis) - psi quantum yield of PSII electron transport - Pmax maximum rate of photosynthesis - qN non-photochemical quenching coefficient - qP photochemical quenching coefficient Many thanks to my colleague William Laing who spent a considerable effort in developing the programme to run the photosynthesis apparatus. I am also indebted to one reviewer with whom I corresponded to resolve some issues in the paper. This project was funded by the New Zealand Foundation for Research, Science and Technology.  相似文献   
36.
Physiological mechanisms causing reduction of metabolic rate during torpor in heterothermic endotherms are controversial. The original view that metabolic rate is reduced below the basal metabolic rate because the lowered body temperature reduces tissue metabolism has been challenged by a recent hypothesis which claims that metabolic rate during torpor is actively downregulated and is a function of the differential between body temperature and ambient temperature, rather than body temperature per se. In the present study, both the steady-state metabolic rate and body temperature of torpid stripe-faced dunnarts, Sminthopsis macroura (Dasyuridae: Marsupialia), showed two clearly different phases in response to change of air temperature. At air temperatures between 14 and 30°C, metabolic rate and body temperature decreased with air temperature, and metabolic rate showed an exponential relationship with body temperature (r 2=0.74). The Q 10 for metabolic rate was between 2 and 3 over the body temperature range of 16 to 32°C. The difference between body temperature and air temperature over this temperature range did not change significantly, and the metabolic rate was not related to the difference between body temperature and air temperature (P=0.35). However, the apparent conductance decreased with air temperature. At air temperatures below 14°C, metabolic rate increased linearly with the decrease of air temperature (r 2=0.58) and body temperature was maintained above 16°C, largely independent of air temperature. Over this air temperature range, metabolic rate was positively correlated with the difference between body temperature and air temperature (r 2=0.61). Nevertheless, the Q 10 for metabolic rate between normothermic and torpid thermoregulating animals at the same air temperature was also in the range of 2–3. These results suggest that over the air temperature range in which body temperature of S. macroura was not metabolically defended, metabolic rate during daily torpor was largely a function of body temperature. At air temperatures below 14°C, at which the torpid animals showed an increase of metabolic rate to regulate body temperature, the negative relationship between metabolic rate and air temperature was a function of the differential between body temperature and air temperature as during normothermia. However, even in thermoregulating animals, the reduction of metabolic rate from normothermia to torpor at a given air temperature can also be explained by temperature effects.Abbreviations BM body mass - BMR basal metabolic rate - C apparent conductance - MR metabolic rate - RMR resting metabolic rate - RQ respiratory quotient - T a air temperature - T b body temperature - T lc lower critical temperature - T tc critical air temperature during torpor - TMR metabolic rate during torpor - TNZ thermoneutral zone - T difference between body temperature and air temperature - VO2 rate of oxygen consumption  相似文献   
37.
Our study aimed to investigate the possible presence of seasonal changes in platelet phenolsulfotransferase (ST) in a group of 20 healthy, drug-free subjects of both sexes and between 24 and 37 years of age. Blood samples were taken four times a year in the period immediately following the equinoxes and the solstices. The results showed that both STs underwent seasonal changes: the lowest values were found in autumn and in winter, and the highest in the summer. A positive correlation between the two STs and the length of the photoperiod was observed in winter, whereas in the spring we detected a negative correlation between the TL ST and the photoperiod length. Future studies should clarify whether platelet ST of patients with mood disorders shows a similar seasonality.  相似文献   
38.
1. 1. The thermoregulatory responses to manipulations of photoperiod in wood mice (Apodemus sylvaticus), which were drawn from a population living at a high latitude (57°N) were studied.
2. 2. Mice captured in spring were acclimated to two different photoperiod regimes 16L:8D and 8L:16D at a constant ambient temperature of 24°C, for 3 weeks.
3. 3. Daily rhythms of body temperature, oxygen consumption and body temperature at various ambient temperatures, nonshivering thermogenesis (the response to a noradrenaline injection) and body mass were measured. Minimal overall thermal conductance was calculated for both groups.
4. 4. Acclimation to long photophase increased the thermoregulatory abilities at relatively high ambient temperatures while that of long-scotophase increased thermoregulatory abilities at low ambient temperatures.
5. 5. Changes in photoperiod may therefore be used as cues for seasonal acclimatization of thermoregulatory mechanisms in this population of wood mice.
  相似文献   
39.
We examined whether melatonin can act as a synchronizing agent within the circadian system of amphibians by testing the ability of melatonin injections to entrain the circadian locomotor activity rhythm of a newt (Cynops pyrrhogaster). Under constant darkness, all newts (13 cases) showing the free-running rhythms were subcutaneously injected with 10 g melatonin at the same time every other day for at least 30 days. Subsequently, they were injected with vehicle (1% ethanolic saline) instead of melatonin for at least another 30 days. In 10 of the 13 newts, the locomotor activity rhythms could be entrained to a period of 24 h by melatonin injections but not by vehicle injections. During the entrained steady-state, the active phase of an activity-rest cycle preceded the time of melatonin injections as previously reported in other diurnal species. These results suggest that the endogenous circadian rhythm of melatonin concentration may be involved in synchronizing circadian oscillator(s) within the newt's circadian system.  相似文献   
40.
A comprehensive set of cosinor treatment programs has been written for an Apple II microcomputer. The system includes Single Cosinor, Mean (population) Cosinor and Serial Sections analyses as well as extensive graphics and file management. The package is integrated and used through a hierarchically ordered system of menus and choices. 48k memory and two disk drives are required, and both EPSON and SILENTYPE printers are supported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号