首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39798篇
  免费   1785篇
  国内免费   2225篇
  2023年   375篇
  2022年   360篇
  2021年   737篇
  2020年   772篇
  2019年   957篇
  2018年   862篇
  2017年   835篇
  2016年   949篇
  2015年   1183篇
  2014年   1972篇
  2013年   2882篇
  2012年   1547篇
  2011年   1605篇
  2010年   1346篇
  2009年   1589篇
  2008年   1671篇
  2007年   1706篇
  2006年   1619篇
  2005年   1657篇
  2004年   1706篇
  2003年   1572篇
  2002年   1352篇
  2001年   1112篇
  2000年   1012篇
  1999年   1029篇
  1998年   946篇
  1997年   835篇
  1996年   802篇
  1995年   926篇
  1994年   894篇
  1993年   750篇
  1992年   741篇
  1991年   585篇
  1990年   565篇
  1989年   460篇
  1988年   507篇
  1987年   403篇
  1986年   364篇
  1985年   447篇
  1984年   489篇
  1983年   284篇
  1982年   379篇
  1981年   212篇
  1980年   195篇
  1979年   169篇
  1978年   117篇
  1977年   80篇
  1976年   81篇
  1974年   35篇
  1973年   32篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
71.
ABSTRACT

We present an easy test for rapid visualization of viral DNA assemblies in infected cell cytoplasm. We selected the best stains for nuclear staining: Nile blue A, Bismarck brown, gallocyanin chrome alum, methyl green pyronin and azure II. None of the staining techniques is fluorescent, which facilitates their use in everyday experiments. Methyl green is most promising for routine detection of viral DNA assemblies in the cytoplasm; the procedure enables ready detection of viral DNA accumulation in the cytoplasm.  相似文献   
72.
Strategies for signal amplification in nucleic acid detection   总被引:3,自引:0,他引:3  
Many aspects of molecular genetics necessitate the detection of nucleic acid sequences. Current approaches involving target amplification (in situ PCR, Primed in situ Labeling, Self-Sustained Sequence Replication, Strand Displacement Amplification), probe amplification (Ligase Chain Reaction, Padlock Probes, Rolling Circle Amplification) and signal amplification (Tyramide Signal Amplification, Branched DNA Amplification) are summarized in the present review, together with their advantages and limitations.  相似文献   
73.
74.
The organization of eukaryotic chromatin is not static but changes as a function of cell status during processes such as proliferation, differentiation, and migration. DNA quantification has not been used extensively to investigate chromatin dynamics in combination with cellular migration. In this context, an optimized DNA-specific, nonperturbant method has been developed for studying chromatin organization, using the fluorescent vital bisbenzimidazole probe Hoechst 33342: this property has been described by Hamori et al. (1980). Computer-assisted image analysis was used to follow migratory activity and chromatin organization of L929 fibroblasts during in vitro wound healing. Cell movements were analyzed using an optical flow technique, which consists in the calculation of the velocity field of cells and nuclear movements in the frame. This system allows the correlation of cell migration and position in the cell cycle. It makes it possible to study chromatin dynamics using a quantitative analysis of nuclear differentiation reorganization (nuclear texture) and to correlate this with migration characteristics. The present system would be of interest for studying cell-extracellular matrix interactions using differing substrates, and also the migratory response to chemotactic factors. Such a model is a prerequisite for gaining better understanding of drug action.  相似文献   
75.
76.
In the present study we have evaluated the antigenotoxic effects of Farnesol (FL) a 15-carbon isoprenoid alcohol against benzo (a) pyrene [B(a)P] (125 mg kg? 1.b.wt oral) induced toxicity. B(a)P administration lead to significant induction in Cytochrome P450 (CYP) content and aryl hydrocarbon hydrolase (AHH) activity (p < 0.001), DNA strand breaks and DNA adducts (p < 0.001) formation. FL was shown to suppress the activities of both CYP and AHH (p < 0.005) in modulator groups. FL pretreatment significantly (p < 0.001) restored depleted levels of reduced glutathione (GSH), quinone reductase (QR) and glutathione –S-transferase (GST). A simultaneous significant and at both the doses reduction was seen in DNA strand breaks and in in-vivo DNA adducts formation (p < 0.005), which gives some insight on restoration of DNA integrity. The results support the protective nature of FL. Hence present data supports FL as a future drug to preclude B (a) P induced toxicity.  相似文献   
77.
Chromosomal restriction fragments of Corynebacterium ulcerans and C. diphtheriae, containing an integration site for corynephages of the beta family, show homology on Southern blots. Homologous DNA in also found in the soil isolate C. glutamicum, although this strain is not susceptible to beta-corynephages. Three of these DNA fragments, one for each bacterial strain, and a fragment of gamma-corynephage DNA previously shown to contain the phage integration site, were cloned and sequenced. Alignment of the 3 bacterial sequences shows a very high degree of homology in a stretch of ca 120 nucleotides, whereas the rest of the sequences is generally non-homologous. Within this common bacterial portion, a segment of ca. 96 nucleotides (core sequence) is also highly homologous to the phage sequence. The first half (ca. 50 bp) of the core sequence is identical in all aligned sequences whereas the second half, which is largely occupied by a stem-and-loop structure, contains point mutations peculiar to each clone. The described sequences are likely to be involved in phage integration/excision processes.  相似文献   
78.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
79.
Human pluripotent stem cells (PSCs) are presumed to have robust DNA repair pathways to ensure genome stability. PSCs likely need to protect against mutations that would otherwise be propagated throughout all tissues of the developing embryo. How these cells respond to genotoxic stress has only recently begun to be investigated. Although PSCs appear to respond to certain forms of damage more efficiently than somatic cells, some DNA damage response pathways such as the replication stress response may be lacking. Not all DNA repair pathways, including the DNA mismatch repair (MMR) pathway, have been well characterized in PSCs to date. MMR maintains genomic stability by repairing DNA polymerase errors. MMR is also involved in the induction of cell cycle arrest and apoptosis in response to certain exogenous DNA-damaging agents. Here, we examined MMR function in PSCs. We have demonstrated that PSCs contain a robust MMR pathway and are highly sensitive to DNA alkylation damage in an MMR-dependent manner. Interestingly, the nature of this alkylation response differs from that previously reported in somatic cell types. In somatic cells, a permanent G2/M cell cycle arrest is induced in the second cell cycle after DNA damage. The PSCs, however, directly undergo apoptosis in the first cell cycle. This response reveals that PSCs rely on apoptotic cell death as an important defense to avoid mutation accumulation. Our results also suggest an alternative molecular mechanism by which the MMR pathway can induce a response to DNA damage that may have implications for tumorigenesis.  相似文献   
80.
R. Meyer  W. Nagl 《Protoplasma》1993,172(2-4):132-135
Summary Video-densitometric DNA measurements of Feulgenstained tissues of 42 day old eggs of the corn snake,Elaphe g. guttata (Columbridae, Serpentes), revealed a basic DNA content of 2C=2.17 pg, with somatic polyploidy in the allantois, the chorioallontois, the yolk sac, and other extraembryonic membranes. The maximum value determined was 128C (in binucleate cells 2×128C) at the distal pole of the egg. This is the first report of somatic polyploidy in a snake, and one of the first in reptiles in general.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号