首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38722篇
  免费   2127篇
  国内免费   4974篇
  2024年   48篇
  2023年   555篇
  2022年   599篇
  2021年   1019篇
  2020年   963篇
  2019年   1258篇
  2018年   1057篇
  2017年   930篇
  2016年   1001篇
  2015年   1227篇
  2014年   1826篇
  2013年   2573篇
  2012年   1696篇
  2011年   1837篇
  2010年   1540篇
  2009年   1896篇
  2008年   2097篇
  2007年   2259篇
  2006年   2239篇
  2005年   2108篇
  2004年   1928篇
  2003年   1808篇
  2002年   1625篇
  2001年   1319篇
  2000年   1093篇
  1999年   1068篇
  1998年   940篇
  1997年   820篇
  1996年   741篇
  1995年   768篇
  1994年   743篇
  1993年   527篇
  1992年   490篇
  1991年   411篇
  1990年   367篇
  1989年   300篇
  1988年   291篇
  1987年   276篇
  1986年   218篇
  1985年   218篇
  1984年   240篇
  1983年   128篇
  1982年   169篇
  1981年   116篇
  1980年   106篇
  1979年   90篇
  1978年   82篇
  1977年   57篇
  1976年   59篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
81.
82.
Xanthomonas campestris pv. vitians, a pathogen of lettuce, elicits a hypersensitive response within 12 hours of inoculation into Brassica leaves, characterized by tissue collapse, loss of membrane integrity, vein blockage and melanin production. In contrast, the compatible pathogen, X. c. pv. campestris, has no visible effects on leaves for 48 hours, after which inoculated areas show chlorosis which eventually spreads, followed by rotting.mRNA was prepared from leaves inoculated with suspensions of both pathovars or with sterile medium up to 24 hours following inoculation. In vitro translation of total and poly A+ RNA in rabbit reticulocyte lysate in the presence of 35S methionine followed by separation of the polypeptide products by 2D-PAGE, allowed comparison of the effects of these treatments on plant gene expression. Major changes in gene expression were observed as a consequence of the inoculation technique. In addition, after inoculation with X. c. vitians, up to fifteen additional major polypeptides appeared or greatly increased by four hours. Some of these had disappeared by nine hours and several more had appeared. No major polypeptides disappeared or decreased greatly in intensity following inoculation with X. c. vitians.  相似文献   
83.
84.
The local chromatin structure of the Shrunken-1 (Sh) gene of maize was probed by analyzing DNase I hypersensitivity. Sh encodes the gene for sucrose synthetase, a major starch biosynthetic enzyme, which is maximally expressed in the endosperm during seed maturation. In addition to general DNase I sensitivity, specific DNase I hypersensitive sites were identified in endosperm chromatin that mapped near the 5 end of the Sh gene. The pattern of hypersensitive sites and their relative sensitivity were altered in other non-dormant tissues that produce little or no enzyme. However, some changes in chromatin structure appear to be independent of Sh gene expression and may reflect general alterations associated with plant development. The chromatin structure of several sh mutations, induced by Ds controlling element insertions, was also analyzed. Although the insertions perturbed expression of the gene, there were no notable effects on local chromatin structure.  相似文献   
85.
A system was established for introducing cloned genes into white clover (Trifolium repens L.). A high regeneration white clover genotype was transformed with binary Agrobacterium vectors containing a chimaeric gene which confers kanamycin resistance. Transformed kanamycin resistant callus was obtained by culturing Agrobacterium inoculated stolon internode segments on selective medium. The kanamycin resistance phenotype was stable in cells and in regenerated shoots. Transformation was confirmed by the expression of an unselected gene, nopaline synthase in selected cells and transgenic shoots and by the detection of neomycin phosphotransferase II enzymatic activity in kanamycin resistant cells. Integration of vector DNA sequences into plant DNA was demonstrated by Southern blot hybridisation.  相似文献   
86.
The globulin storage protein genes of cotton are found to exist as gene tandems that contain a gene from each of the 2 globulin subfamilies separated by a spacer region of about 2700 or 3400 base pairs. Three different tandems have been identified by restriction endonuclease mapping of genomic DNA. A cDNA that is different from the genes of the tandems in map sites and/or in nucleotide sequence indicates that a fourth tandem probably exists in the cotton genome. Since the species of cotton used here (Gossypium hirsutum) is an amphidiploid, it is likely that two of the tandems are contributed from each genome.Considerable divergence in nucleotide sequence (18%) and in derived amino acid sequence (28%) is found when the 2 genes of a sequenced tandem are compared. The sequence of the cDNA closely resembles one of the genes in the tandem showing only a 4% divergence in nucleotides and a 4.2% divergence in amino acids. Thus the 2 genes of each tandem represent a relatively ancient gene duplication that has given rise to the two globulin subfamilies of cotton. Only one subfamily has a glycosylation site and the glycosylation of its derived proteins gives rise to the 2 molecular weight sets of globulins seen on gel electrophoresis.Other basic features of these genes and their derived proteins are presented.  相似文献   
87.
88.
89.
Summary Insertion of the transposable element Ty at the ADH4 locus results in increased levels of a new alcohol dehydrogenase (ADH) activity in Saccharomyces cerevisiae. The DNA sequence of this locus has been determined. It contains a long open reading frame which is not homologous to the other ADH isozymes that have been characterized in S. cerevisiae nor does it show obvious homology to Drosophila ADH. The hypothetical ADH does, however, show strong homology to the sequence of an iron-activated ADH from the bacterium Zymomonas mobilis. Thus ADH4 appears to encode an ADH structural gene which, along with the Zymomonas enzyme, may define a new family of alcohol dehydrogenases.Now The Plant Cell Research Institute, Inc., 6560 Trinity Court, Dublin, CA 94568, USA  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号