首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6137篇
  免费   717篇
  国内免费   585篇
  2024年   27篇
  2023年   208篇
  2022年   194篇
  2021年   444篇
  2020年   493篇
  2019年   635篇
  2018年   397篇
  2017年   236篇
  2016年   281篇
  2015年   268篇
  2014年   387篇
  2013年   460篇
  2012年   269篇
  2011年   317篇
  2010年   214篇
  2009年   259篇
  2008年   259篇
  2007年   264篇
  2006年   218篇
  2005年   226篇
  2004年   183篇
  2003年   169篇
  2002年   144篇
  2001年   74篇
  2000年   68篇
  1999年   74篇
  1998年   65篇
  1997年   57篇
  1996年   53篇
  1995年   46篇
  1994年   41篇
  1993年   47篇
  1992年   32篇
  1991年   27篇
  1990年   31篇
  1989年   22篇
  1988年   25篇
  1987年   23篇
  1986年   26篇
  1985年   25篇
  1984年   29篇
  1983年   18篇
  1982年   23篇
  1981年   13篇
  1980年   19篇
  1979年   6篇
  1978年   10篇
  1977年   6篇
  1976年   7篇
  1974年   6篇
排序方式: 共有7439条查询结果,搜索用时 46 毫秒
101.
摘要 目的:探讨磁共振成像在剖宫产术后瘢痕妊娠(cesarean scar pregnancy,CSP)诊疗路径中的应用价值。方法:回顾性分析24例经手术和(或)病理证实为瘢痕妊娠的孕妇临床和影像检查资料,记录MRI上妊娠囊位置、大小、T1、T2信号强度、妊娠囊类型、妊娠囊与子宫前壁下段肌层及膀胱的关系,分析MR特征对临床诊疗路径的应用价值。结果:24例妊娠囊均位于子宫下段,为圆形或卵圆形,11例妊娠囊为单纯囊性,12例妊娠囊为混杂包块型,1例因清宫术后行MR,未见明确妊娠囊,仅见子宫下段混杂信号。10例妊娠囊附着处子宫肌厚度不可测量,余14例妊娠囊附着处子宫肌厚度约0.9~5.0 mm,平均2.5±1.1 mm。据此,CSP分型为I型5例,II型7例,III型12例。结论:MRI能较好的评估CSP, 在CSP诊疗路径中的应用价值较大。  相似文献   
102.
103.
Terpenoid phytoalexins and other defense compounds play an important role in disease resistance in a variety of plant families but have been most widely studied in solanaceous species. The rate-limiting step in terpenoid phytoalexin production is mediated by 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), which catalyzes mevalonic acid synthesis. HMGRs are involved in the biosynthesis of a broad array of terpenoid compounds, and distinct isoforms of HMGR may be critical in directing the flux of pathway intermediates into specific end products. Plant HMGRs are encoded by a small gene family, and genomic or cDNA sequences encoding HMGR have been isolated from several plant species. In tomato, four genes encode HMGR; these genes are differentially activated during development and stress responses. One gene, hmg 2 , is activated in response to wounding and a variety of pathogenic agents suggesting a role in sesquiterpene phytoalexin biosynthesis. In contrast, expression patterns of tomato hmg l suggest a role in sterol biosynthesis and cell growth. Other plant species show an analogous separation of specific HMGR isoforms involved in growth and/or housekeeping function and inducible isoforms associated with biosynthesis of phytoalexins or other specialized "natural products". We are applying a variety of cell and molecular techniques to address whether subcellular localization and/or differential expression of these isoforms are key factors in determining end product accumulation during development and defense.  相似文献   
104.
The complex pathway of tetrapyrrole biosynthesis can be dissected into five sections: the pathways that produce 5-aminolevulinate (the C-4 and the C-5 pathways), the steps that transform ALA to uroporphyrinogen III, which are ubiquitous in the biosynthesis of all tetrapyrroles, and the three branches producing specialized end products. These end products include corrins and siroheme, chlorophylls and hemes and linear tetrapyrroles. These branches have been subjects of recent reviews. This review concentrates on the early steps leading up to uroporphyrinogen III formation which have been investigated intensively in recent years in animals, in plants, and in a wide range of bacteria.Abbreviations ALA 5-aminolevulinic acid - ALAS 5-aminolevulinic acid synthase - GR glutamyl-tRNA reductase - GSA glutamate-1-semialdehyde - GSAT glutamate-1-semialdehyde aminotransferase - HMB hydroxymethylbilane - PBG porphobilinogen - PBGD porphobilinogen deaminase - PBGS porphobilinogen synthase - URO uroporphyrin - URO'gen uroporphyrinogen - US uroporphyrinogen III synthase  相似文献   
105.
Exploiting the differential expression of genes for Calvin cycle enzymes in bundle-sheath and mesophyll cells of the C4 plant Sorghum bicolor L., we isolated via subtractive hybridization a molecular probe for the Calvin cycle enzyme d-ribulose-5-phosphate 3-epimerase (R5P3E) (EC 5.1.3.1), with the help of which several full-size cDNAs were isolated from spinach. Functional identity of the encoded mature subunit was shown by R5P3E activity found in affinity-purified glutatione S-transferase fusions expressed in Escherichia coli and by three-fold increase of R5P3E activity upon induction of E. coli overexpressing the spinach subunit under the control of the bacteriophage T7 promoter, demonstrating that we have cloned the first functional ribulose-5-phosphate 3-epimerase from any eukaryotic source. The chloroplast enzyme from spinach shares about 50% amino acid identity with its homologues from the Calvin cycle operons of the autotrophic purple bacteria Alcaligenes eutrophus and Rhodospirillum rubrum. A R5P3E-related eubacterial gene family was identified which arose through ancient duplications in prokaryotic chromosomes, three R5P3E-related genes of yet unknown function have persisted to the present within the E. coli genome. A gene phylogeny reveals that spinach R5P3E is more similar to eubacterial homologues than to the yeast sequence, suggesting a eubacterial origin for this plant nuclear gene.Abbreviations R5P3E d-ribulose-5-phosphate 3-epimerase - RPI ribose-5-phosphate isomerase - TKL transketolase - PRK phosphoribulokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - FBP fructose-1,6-bisphophatase - FBP fructose 1,6-bisphosphate - G6PDH glucose-6-phosphate dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase - OPPP oxidative pentose phosphate pathway - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - FBA fructose-1,6-bisphophate aldolase - IPTG isopropyl -d-thiogalactoside - GST glutathione S-tranferase - PBS phosphate-buffered saline - TPI triosephosphate isomerase  相似文献   
106.
Yeast cells can respond and adapt to osmotic stress. In our attempt to clarify the molecular mechanisms of cellular responses to osmotic stress, we cloned seven cDNAs for hyperosmolarity-responsive (HOR) genes from Saccharomyces cerevisiae by a differential screening method. Structural analysis of the clones revealed that those designated HOR1, HORS, HOR4, HOR5 and HOR6 encoded glycerol-3-phosphate dehydrogenase (Gpd1p), glucokinase (Glklp), hexose transporter (Hxtlp), heat-shock protein 12 (Hsp12p) and Na+, K+, Li+-ATPase (Enalp), respectively. HOR2 and HOR7 corresponded to novel genes. Gpdlp is a key enzyme in the synthesis of glycerol, which is a major osmoprotectant in S. cerevisiae. Cloning of HOR1/GPD1 as a HOR gene indicates that the accumulation of glycerol in yeast cells under hyperosmotic stress is, at least in part, caused by an increase in the level of GPDH protein. We performed a series of Northern blot analyses using HOR cDNAs as probes and RNAs prepared from cells grown under various conditions and from various mutant cells. The results suggested that all the HOR genes are regulated by common signal transduction pathways. However, the fact that they exhibited certain distinct responses indicated that they might also be regulated by specific pathways in addition to the common pathways. Ca2+ seemed to be involved in the signaling systems. In addition, Hog1p, one of the MAP kinases in yeast, appeared to be involved in the regulation of expression of HOR genes, although its function seemed to be insufficient for the overall regulation of expression of these genes.  相似文献   
107.
The disulfide bond assignments of human alanyl tissue factor pathway inhibitor purified fromEscherichia coli have been determined. This inhibitor of the extrinsic blood coagulation pathway possesses three Kunitz-type inhibitor domains, each containing three disulfide bonds. The disulfide bond pairings in domains 1 and 3 were determined by amino acid sequencing and mass spectrometry of peptides derived from a thermolysin digest. However, thermolysin digestion did not cleave any peptide bonds within domain 2. The disulfide bond pairings in domain 2 were determined by isolating it from the thermolysin treatment and subsequently cleaving it with pepsin and trypsin into peptides which yielded the three disulfide bond pairings in this domain. These results demonstrate that the disulfide pairings in each of the three domains of human tissue factor pathway inhibitor purified fromEscherichia coli are homologous to each other and also to those in bovine pancreatic trypsin inhibitor.  相似文献   
108.
Abstract: Neuronally differentiated PC12 cells undergo synchronous apoptosis when deprived of nerve growth factor (NGF). Here we show that NGF withdrawal induces actinomycin D- and cycloheximide-sensitive caspase (ICE-like) activity. The peptide inhibitor of caspase activity, N -acetyl-Asp-Glu-Val-Asp-aldehyde, was more potent than acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone in preventing NGF withdrawal-induced apoptosis, suggesting an important role for caspase-3 (CPP32)-like proteases. We observed a peak of reactive oxygen species (ROS) 6 h after NGF withdrawal. ROS appear to be required for apoptosis, because cell death is prevented by the free radical spin trap, N-tert -butyl-α-phenylnitrone, and the antioxidant, N -acetylcysteine. ROS production was blocked by actinomycin D, cycloheximide, and caspase protease inhibitors, suggesting that ROS generation is downstream of new mRNA and protein synthesis and activation of caspases. Forced expression of either BCL-2 or the BCL-2-binding protein BAG-1 blocked NGF withdrawal-induced apoptosis, activation of caspases, and ROS generation, showing that they function upstream of caspases. Coexpression of BCL-2 and BAG-1 was more protective than expression of either protein alone.  相似文献   
109.
Poly(A) polymerase is responsible for the addition of the adenylate tail to the 3′ ends of mRNA. Using the two-hybrid system, we have identified two proteins which interact specifically with the Saccharomyces cerevisiae poly(A) polymerase, Pap1. Uba2 is a homolog of ubiquitin-activating (E1) enzymes and Ufd1 is a protein whose function is probably also linked to the ubiquitin-mediated protein degradation pathway. These two proteins interact with Pap1 and with each other, but not with eight other target proteins which were tested in the two-hybrid system. The last 115 amino acids of Uba2, which contains an 82-amino acid region not present in previously characterized E1 enzymes, is sufficient for the interaction with Pap1. Both Uba2 and Ufd1 can be co-immunoprecipitated from extracts with Pap1, confirming in vitro the interaction identified by two-hybrid analysis. Depletion of Uba2 from cells produces extracts which polyadenylate precursor RNA with increased efficiency compared to extracts from nondepleted cells, while depletion of Ufd1 yields extracts which are defective in processing. These two proteins are not components of polyadenylation factors, and instead may have a role in regulating poly(A) polymerase activity. Received: 6 January 1997 / Accepted: 27 February 1997  相似文献   
110.
Chloroplasts of land plants have an active transfer RNA processing system, consisting of an RNase P-like 5 endonuclease, a 3 endonuclease, and a tRNA:CCA nucleotidyltransferase. The specificity of these enzymes resembles more that of their eukaryotic counterparts than that of their cyanobacterial predecessors. Most strikingly, chloroplast RNase P activity almost certainly resides in a protein, rather than in an RNA protein complex as in Bacteria, Archaea, and Eukarya. The chloroplast enzyme may have evolved from a preexisting chloroplast NADP-binding protein. Chloroplast RNase P cleaves pre-tRNA by a reaction mechanism in which at least one of the Mg2+ ions utilized by the bacterial ribozyme RNase P is replaced by an amino acid side chain.Abbreviations pre-tRNA precursor to tRNA - pCp cytidine 5, 3-bisphosphate - IC50 inhibitor concentration giving 50% inhibition - GAPDH glyceraldehyde 3-phosphate dehydrogenase  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号