首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
  国内免费   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2011年   1篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   5篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1984年   1篇
排序方式: 共有42条查询结果,搜索用时 203 毫秒
31.
应用细胞整装制备和穿透电子显微镜技术,在家蚕4龄幼虫睾丸育精囊的初级精母幼胞内检查出四个基体—轴丝复合体结构.呈两对,每对结构是由连结纤维将基体牢固地联结并使其相互成直角排列.生长的复合体呈现出丰满的远心端膨大.在此阶段,轴丝是由9个具有马达蛋白臂的双微管组成,缺乏辐射轴和两个中央单微管.在基体的三联体微管和轴丝的双微管的接合点,观察到连结节.  相似文献   
32.
Summary In order to resolve apparent differences in reported experiments, we directly compared the effects of ultraviolet (UV) microbeam irradiations on the behaviour of spindle fibres in newt epithelial cells and crane-fly spermatocytes, using the same apparatus for both cell types. This work represents the first time that irradiated crane-fly spermatocytes have been followed using a high-NA objective and video-enhancement of images. In both cell types, irradiation of a kinetochore fibre in metaphase produced an area of reduced birefringence (ARB), known to be devoid of spindle microtubules (MTs). Subsequently the kinetochore-ward edge of the ARB moved poleward with average velocities of 0.5 m/min (n=20) in spermatocytes and 1.1 m/min (n=6) in epithelial cells. The poleward edge of the ARB rapidly disappeared when viewed using a ×100, high-NA objective but generally remained visible when viewed with a ×32, low-NA objective; this difference suggests that MTs poleward from the ARB disperse vertically out of the narrow depth of field of the ×100 objective but that many remain encompassed by that of the ×32 objective. The primary difference in response between the two cell types was in the behaviour of the spindle poles after an ARB formed. In spermatocytes the spindle maintained its original length whereas in epithelial cells the pole on the irradiated side very soon moved towards the chromosomes, after which the other pole did the same and a much shortened functional metaphase spindle was formed.  相似文献   
33.
Duan T  Yang QL  Wang L  Shi QH  Yu DX 《遗传》2011,33(7):725-730
减数分裂遗传重组对同源染色体的正确分离和单倍体的正确形成起至关重要的作用,但人们对人精母细胞减数分裂遗传重组机制了解的还很少。通过免疫荧光染色技术标记减数分裂I联会复合体上的MLH1(DNA错配修复蛋白)位点可以检测人精母细胞的重组。文章对10例可育男性进行分析,发现每个细胞中重组位点数平均为49.4士4.4,范围为33~63,具有显著的个体差异,只有0.4%(1/220)的常染色体SC上缺少MLH1位点。进一步通过Spearman相关性分析,分析了年龄因素与个体间重组位点差异的相关性,结果提示年龄因素对常染色体及性染色体的重组均无影响。  相似文献   
34.
The karyotype and male meiosis, with a particular focus on the presence or absence of chiasmata between the homologs, were studied in the water boatman species Cymatia rogenhoferi (Fieber) and Cymatia coleoptrata (Fabricius) (Corixidae, Cymatiainae). It is shown that the species have 2n = 33 (28A+2m+X1X2Y) and 2n = 24 (20A+2m+XY) respectively, post-reduction of sex chromosomes, and achiasmate meiosis of an alignment type in males. Cytogenetic and some morphological diagnostic characters separating Cymatia Flor from the rest of Corixidae are discussed.  相似文献   
35.
In mammals, the testis-specific bromodomain and extra terminal (BET) protein BRDT is essential for spermatogenesis. In Drosophila, it was recently reported that the tBRD-1 protein is similarly required for male fertility. Interestingly, however, tBRD-1 has two conserved bromodomains in its N-terminus but it lacks an extra terminal (ET) domain characteristic of BET proteins. Here, using proteomics approaches to search for tBRD-1 interactors, we identified tBRD-2 as a novel testis-specific bromodomain protein. In contrast to tBRD-1, tBRD-2 contains a single bromodomain, but which is associated with an ET domain in its C-terminus. Strikingly, we show that tbrd-2 knock-out males are sterile and display aberrant meiosis in a way highly similar to tbrd-1 mutants. Furthermore, these two factors co-localize and are interdependent in spermatocytes. We propose that Drosophila tBRD-1 and tBRD-2 associate into a functional BET complex in spermatocytes, which recapitulates the activity of the single mammalian BRDT-like protein.  相似文献   
36.
Summary Interactions between pachytene spermatocytes and Sertoli cells were investigated using the bicameral culture chamber system. Pachytene spermatocytes were isolated from adult rats with a purity in excess of 90% by centrifugal elutriation. The pachytene spermatocytes were cultured in a defined media and pachytene spermatocyte protein prepared from the conditioned media by dialysis and lyophilization. This pachytene spermatocyte protein was reconstituted at various concentrations and incubated with confluent epithelial sheets of immature Sertoli cells cultured in bicameral chambers. Pachytene spermatocyte protein stimulated secretion of total [35S]methionine-labeled protein from Sertoli cells in a dose-dependent manner predominantly in an apical direction. This stimulatory effect of pachytene spermatocyte protein was domain specific from the apical surface of Sertoli cells, and seemed specific for secretion because total intracellular protein did not increase under the influence of pachytene spermatocyte protein. Pachytene spermatocyte protein and follicle-stimulating hormone additively stimulated Sertoli cell secretion. The physicochemical characteristics of the stimulatory pachytene spermatocyte protein are indicative of heat stability, whereas the stimulatory pachytene spermatocyte protein exhibit acid, dithiothreitol and trypsin sensitivity, and partial urea sensitivity. Furthermore, Sertoli cell secretion of ceruloplasmin, sulfated glycoprotein-1, sulfated glycoprotein-2, and transferrin in response to various concentrations of pachytene spermatocyte protein were determined by immunoprecipitate of these [35S]methionine-labeled proteins with polyclonal antibodies. Maximal stimulation of ceruloplasmin and sulfated glycoprotein-1 secretion from Sertoli cells was observed at a dose of 50 μg/ml pachytene spermatocyte protein, whereas maximal stimulation of sulfated glycoprotein-2 and transferrin secretion from Sertoli cells was observed at a dose of 100 μg/ml of pachytene spermatocyte protein. These results suggest that pachytene spermatocytes modulate Sertoli cell secretory function of at least four proteins in the regulation of spermatogenesis. Supported by grant #DCB-8915930 (D. D.) from the National Science Foundation, Washington, DC.  相似文献   
37.
Summary Variable numbers of bivalents and sex chromosomes do not attach to the spindle when prophase or early prometaphase cranefly spermatocytes (2n=8) are treated with cytochalasin D or latrunculin. The unattached bivalents lie in the cytoplasm or at the spindle pole, and they do not delay onset of autosomal anaphase; sometimes they disjoin at the same time as the attached bivalents, so they respond to the global signals that initiate anaphase. Unattached sex chromosomes do not delay autosomal anaphase, either. Of various interpretations of these data, we think the best explanation is that the checkpoint system responds to physical rather than chemical cues; we think that the spindle is a tensegral structure, that chromosomes need to interact with the spindle in order to be recognised by the anaphase-onset checkpoint control, and that the physical interaction of chromosomes with spindle acts as a signalling network. Cytochalasin D and latrunculin treatments delay onset of sex chromosome anaphase (which normally occurs about 15 min after autosomal anaphase) and cause altered patterns of sex-chromosome segregation.  相似文献   
38.
39.
40.
Humans are occasionally exposed to extreme environmental heat for a prolonged period of time. Here, we investigated testicular responses to whole‐body heat exposure by placing mice in a warm chamber. Among the examined tissues, the testis was found to be most susceptible to heat stress. Heat stress induces direct responses within germ cells, such as eukaryotic initiation factor 2α phosphorylation and stress granule (SG) formation. Prolonged heat stress (42°C for 6 hr) also disturbed tissue organization, such as through blood‐testis barrier (BTB) leakage. Germ cell apoptosis was induced by heat stress for 6 hr in a cell type‐ and developmental stage‐specific manner. We previously showed that spermatocytes in the early tubular stages (I–VI) form SGs for protection against heat stress. In the mid‐tubular stages (VII–VIII), BTB leakage synergistically enhances the adverse effects of heat stress on pachytene spermatocyte apoptosis. In the late tubular stages (IX–XII), SGs are not formed and severe leakage of the BTB does not occur, resulting in mild apoptosis of late‐pachytene spermatocytes near meiosis. Our results revealed that multiple stress responses are involved in germ cell damage resulting from prolonged heat stress (42°C for 6 hr).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号