首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6602篇
  免费   827篇
  国内免费   316篇
  2024年   28篇
  2023年   206篇
  2022年   210篇
  2021年   470篇
  2020年   414篇
  2019年   440篇
  2018年   370篇
  2017年   303篇
  2016年   320篇
  2015年   369篇
  2014年   532篇
  2013年   528篇
  2012年   278篇
  2011年   358篇
  2010年   280篇
  2009年   278篇
  2008年   277篇
  2007年   338篇
  2006年   277篇
  2005年   257篇
  2004年   227篇
  2003年   193篇
  2002年   204篇
  2001年   123篇
  2000年   75篇
  1999年   67篇
  1998年   62篇
  1997年   57篇
  1996年   36篇
  1995年   38篇
  1994年   29篇
  1993年   23篇
  1992年   19篇
  1991年   8篇
  1990年   5篇
  1989年   12篇
  1988年   8篇
  1987年   5篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有7745条查询结果,搜索用时 15 毫秒
91.
IntroductionFor patients with brain metastases, palliative radiation therapy (RT) has long been a standard of care for improving quality of life and optimizing intracranial disease control. The duration of time between completion of palliative RT and patient death has rarely been evaluated.MethodsA compilation of two prospective institutional databases encompassing April 2015 through December 2018 was used to identify patients who received palliative intracranial radiation therapy. A multivariate logistic regression model characterized patients adjusting for age, sex, admission status (inpatient versus outpatient), Karnofsky Performance Status (KPS), and radiation therapy indication.Results136 consecutive patients received intracranial palliative radiation therapy. Patients with baseline KPS <70 (OR = 2.2; 95%CI = 1.6–3.1; p < 0.0001) were significantly more likely to die within 30 days of treatment. Intracranial palliative radiation therapy was most commonly delivered to provide local control (66% of patients) or alleviate neurologic symptoms (32% of patients), and was most commonly delivered via whole brain radiation therapy in 10 fractions to 30 Gy (38% of patients). Of the 42 patients who died within 30 days of RT, 31 (74%) received at least 10 fractions.ConclusionsOur findings indicate that baseline KPS <70 is independently predictive of death within 30 days of palliative intracranial RT, and that a large majority of patients who died within 30 days received at least 10 fractions. These results indicate that for poor performance status patients requiring palliative intracranial radiation, hypofractionated RT courses should be strongly considered.  相似文献   
92.
Prostate cancer is the most common malignancy in men and the second leading cause of cancer-related death in men. Radiotherapy is a curative option that is administered via external beam radiation, brachytherapy, or in combination. Sexual dysfunction is a common toxicity following radiotherapy, similar to men undergoing radical prostatectomy, but the etiology is different. The pathophysiology of radiation-induced sexual dysfunction is multi-factorial, and the toxicity is a major cause of impaired quality of life among long-term prostate cancer survivors. Management of a patient’s sexual function during and after radiotherapy requires multidisciplinary coordination of care between radiation oncology, urology, psychiatry, pharmacy, and dermatology. This review provides a framework for clinicians to better understand prostatic radiotherapy-induced sexual dysfunction diagnosis, evaluation, and a patient-centered approach to toxicity preventive strategies and management.  相似文献   
93.
BackgroundThe optimal induction treatment in potentially-resectable stage IIIA-N2 NSCLC remains undefined.AimTo compare neoadjuvant high-dose chemoradiotherapy (CRT) to neoadjuvant chemotherapy (CHT) in patients with resectable, stage IIIA-N2 non-small-cell lung cancer (NSCLC).MethodsRetrospective, multicentre study of 99 patients diagnosed with stage cT1-T3N2M0 NSCLC who underwent neoadjuvant treatment (high-dose CRT or CHT) followed by surgery between January 2005 and December 2014.Results47 patients (47.5%) underwent CRT and 52 (52.5%) CHT, with a median follow-up of 41 months. Surgery consisted of lobectomy (87.2% and 82.7%, in the CRT and CHT groups, respectively) or pneumonectomy (12.8% vs. 17.3%). Nodal downstaging (to N1/N0) and Pathologic complete response (pCR; pT0pN0) rates were significantly higher in the CRT group (89.4% vs. 57.7% and 46.8% vs. 7.7%, respectively; p < 0.001)). Locoregional recurrence was significantly lower in the CRT group (8.5% vs. 13.5%; p = 0.047) but distant recurrence rates were similar in the two groups. Median PFS was 45 months (CHT) vs. “not reached” (CRT). Median OS was similar: 61 vs. 56 months (p = 0.803). No differences in grade ≥3 toxicity were observed. On the Cox regression analysis, advanced pT stage was associated with worse OS and PFS (p < 0.001) and persistent N2 disease (p = 0.002) was associated with worse PFS.ConclusionsCompared to neoadjuvant chemotherapy alone, a higher proportion of patients treated with preoperative CRT achieved nodal downstaging and pCR with better locoregional control. However, there were no differences in survival. More studies are needed to know the optimal treatment of these patients.  相似文献   
94.
Gastric cancer (GC) is still the fifth most frequently diagnosed cancer and the third leading cause of cancer deaths in both sexes worldwide. Although the incidence of GC is predicted to continue declining in a growing number of countries in the future, on a global scale the number of newly diagnosed GC cases will remain high, or increase even further, due to changes in population size and increasing risks observed in younger generations. In a retrospective cohort study, collecting data from the Veterans Health Administration, treatment of Helicobacter pylori infection decreased GC risk only if eradication was successful. In a German case‐control study, among GC patients with autoimmune gastritis, pernicious anemia was associated with earlier detection of GC, which translated into a significantly better 5‐year survival. In an updated meta‐analysis, H. pylori eradication therapy in healthy individuals significantly reduced both GC incidence and mortality from GC with a number needed to treat of 72 and 135, respectively. In Korea, successful H. pylori eradication substantially reduced GC incidence in first‐degree relatives of GC patients as well. A meta‐analysis of four trials including 1,556 patients with resectable GC reported that the patient subgroup tumors with high microsatellite instability undergoing surgery did not benefit from perioperative or adjuvant chemotherapy.  相似文献   
95.
PurposeThis study compared the positioning accuracy between cone-beam CT (CBCT) and ExacTrac (ETX) for a single-isocenter multiple target stereotactic radiosurgery (SRS) on two TrueBeam STx systems.MethodsA single-isocenter treatment plan was simulated on an anthropomorphic head phantom with six spherical steel ball bearings (BBs). One of the BBs was chosen to be the isocenter. The five off-isocenter targets were located at various distances from the isocenter. MV portal images were generated to evaluate the deviations between the expected and the real center of the targets after CBCT and ETX positioning, respectively.ResultsThe evaluation of the positioning accuracy for the isocenter target showed that CBCT and ETX positioning provided comparable, sub-millimetric results. Deviations in positioning accuracy were also calculated for all other targets, also showing comparable results for CBCT and ETX. Moreover, our study showed that the deviation between CBCT and ETX positioning were in better agreement for TBSTx1 and deviated slightly higher on TBSTx2 (maximum: 1.23 mm at S/I direction), due to a less perfect alignment between the CBCT coordinate system and the ETX coordinate system on TBSTx2 compared to TBSTx1. This study also showed a correlation between the target positioning accuracy and the distance to the isocenter.ConclusionThe positioning accuracy of ETX and CBCT for targets located at isocenter and off-isocenter locations was compared on two treatment machines and found comparable. Our study highlights the importance of a proper calibration procedure, to ensure correct alignment between the CBCT, ETX and machine coordinate systems.  相似文献   
96.
IntroductionOur markerless tumor tracking algorithm requires 4DCT data to train models. 4DCT cannot be used for markerless tracking for respiratory-gated treatment due to inaccuracies and a high radiation dose. We developed a deep neural network (DNN) to generate 4DCT from 3DCT data.MethodsWe used 2420 thoracic 4DCT datasets from 436 patients to train a DNN, designed to export 9 deformation vector fields (each field representing one-ninth of the respiratory cycle) from each CT dataset based on a 3D convolutional autoencoder with shortcut connections using deformable image registration. Then 3DCT data at exhale were transformed using the predicted deformation vector fields to obtain simulated 4DCT data. We compared markerless tracking accuracy between original and simulated 4DCT datasets for 20 patients. Our tracking algorithm used a machine learning approach with patient-specific model parameters. For the training stage, a pair of digitally reconstructed radiography images was generated using 4DCT for each patient. For the prediction stage, the tracking algorithm calculated tumor position using incoming fluoroscopic image data.ResultsDiaphragmatic displacement averaged over 40 cases for the original 4DCT were slightly higher (<1.3 mm) than those for the simulated 4DCT. Tracking positional errors (95th percentile of the absolute value of displacement, “simulated 4DCT” minus “original 4DCT”) averaged over the 20 cases were 0.56 mm, 0.65 mm, and 0.96 mm in the X, Y and Z directions, respectively.ConclusionsWe developed a DNN to generate simulated 4DCT data that are useful for markerless tumor tracking when original 4DCT is not available. Using this DNN would accelerate markerless tumor tracking and increase treatment accuracy in thoracoabdominal treatment.  相似文献   
97.
PurposeCardiovascular disease (CVD) is a leading cause of death globally. Electrocardiogram (ECG), which records the electrical activity of the heart, has been used for the diagnosis of CVD. The automated and robust detection of CVD from ECG signals plays a significant role for early and accurate clinical diagnosis. The purpose of this study is to provide automated detection of coronary artery disease (CAD) from ECG signals using capsule networks (CapsNet).MethodsDeep learning-based approaches have become increasingly popular in computer aided diagnosis systems. Capsule networks are one of the new promising approaches in the field of deep learning. In this study, we used 1D version of CapsNet for the automated detection of coronary artery disease (CAD) on two second (95,300) and five second-long (38,120) ECG segments. These segments are obtained from 40 normal and 7 CAD subjects. In the experimental studies, 5-fold cross validation technique is employed to evaluate performance of the model.ResultsThe proposed model, which is named as 1D-CADCapsNet, yielded a promising 5-fold diagnosis accuracy of 99.44% and 98.62% for two- and five-second ECG signal groups, respectively. We have obtained the highest performance results using 2 s ECG segment than the state-of-art studies reported in the literature.Conclusions1D-CADCapsNet model automatically learns the pertinent representations from raw ECG data without using any hand-crafted technique and can be used as a fast and accurate diagnostic tool to help cardiologists.  相似文献   
98.
Magnetic resonance guidance in particle therapy has the potential to improve the current performance of clinical workflows. However, the presence of magnetic fields challenges the current algorithms for treatment planning. To ensure proper dose calculations, compensation methods are required to guarantee that the maximum deposited energy of deflected beams lies in the target volume. In addition, proper modifications of the intrinsic dose calculation engines, accounting for magnetic fields, are needed. In this work, an algorithm for proton treatment planning in magnetic fields was implemented in a research treatment planning system (TPS), matRad. Setup-specific look up tables were generated using a validated MC model for a clinical proton beamline (62.4 – 215.7 MeV) interacting with a dipole magnet (B = 0–1 T). The algorithm was successfully benchmarked against MC simulations in water, showing gamma index (2%/2mm) global pass rates higher than 96% for different plan configurations. Additionally, absorbed depth doses were compared with experimental measurements in water. Differences within 2% and 3.5% in the Bragg peak and entrance regions, respectively, were found. Finally, treatment plans were generated and optimized for magnetic field strengths of 0 and 1 T to assess the performance of the proposed model. Equivalent treatment plans and dose volume histograms were achieved, independently of the magnetic field strength. Differences lower than 1.5% for plan quality indicators (D2%, D50%, D90%, V95% and V105%) in water, a TG119 phantom and an exemplary prostate patient case were obtained. More complex treatment planning studies are foreseen to establish the limits of applicability of the proposed model.  相似文献   
99.
Introduction: Cyclotron-based proton therapy facilities use an energy degrader of variable thickness to deliver beams of the different energies required by a patient treatment plan; scattering and straggling in the degrader give rise to an inherent emittance increase and subsequent particle loss in the downstream energy-selection system (ESS). Here we study alternative graphite degrader geometries and examine with Monte-Carlo simulations the induced emittance growth and consequent particle transmission.Methods: We examined the conventional multiple-wedge degrader used in the Paul Scherrer Institute PROSCAN proton therapy system, the equivalent parallel-sided degrader, and a single block degrader of equivalent thickness. G4Beamline Monte-Carlo tracking of protons was benchmarked against measurements of the existing degrader for proton energies from 75 to 230 MeV, and used to validate simulations of the alternative geometries.Results: Using a careful calculation of the beam emittance growth, we determined that a single-block degrader placed close to the collimators of the ESS is expected to deliver significantly larger transmission, up to 17% larger at 150 MeV. At the lowest deliverable of 75 MeV there is still a clear improvement in beam transmission.Conclusions: Whilst dose rates are not presently limited on the PROSCAN system at higher energies, a single-block degrader offers the ability to access either lower energies for treatment or a larger dose rate at 75 MeV in case transmission optimisation is desired. Single-block degraders should be considered for the delivery of low-energy protons from a cyclotron-based particle therapy system.  相似文献   
100.
Small‐cell lung cancer (SCLC) accounts for approximately 15% of lung cancer cases; however, it is characterized by easy relapse and low survival rate, leading to one of the most intractable diseases in clinical practice. Despite decades of basic and clinical research, little progress has been made in the management of SCLC. The current standard first‐line regimens of SCLC still remain to be cisplatin or carboplatin combined with etoposide, and the adverse events of chemotherapy are by no means negligible. Besides, the immunotherapy on SCLC is still in an early stage and novel studies are urgently needed. In this review, we describe SCLC development and current therapy, aiming at providing useful advices on basic research and clinical strategy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号