首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   18篇
  国内免费   6篇
  2024年   1篇
  2023年   7篇
  2022年   2篇
  2021年   4篇
  2020年   9篇
  2019年   11篇
  2018年   10篇
  2017年   9篇
  2016年   12篇
  2015年   14篇
  2014年   19篇
  2013年   23篇
  2012年   12篇
  2011年   23篇
  2010年   11篇
  2009年   81篇
  2008年   80篇
  2007年   77篇
  2006年   70篇
  2005年   52篇
  2004年   52篇
  2003年   27篇
  2002年   13篇
  2001年   11篇
  2000年   11篇
  1999年   28篇
  1998年   25篇
  1997年   8篇
  1996年   8篇
  1995年   10篇
  1994年   11篇
  1993年   4篇
  1992年   10篇
  1991年   2篇
  1990年   1篇
  1989年   8篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
排序方式: 共有781条查询结果,搜索用时 234 毫秒
641.
Bleached and non-bleached fragments of three species of Hawaiian corals were exposed to enhanced and ambient concentrations of zooplankton at 1 and 6 m depth to determine the contribution of zooplankton to the coral's daily carbon budget. The size and taxonomic grouping were recorded for every zooplankton captured and the relative input of zooplankton of different size classes was determined. The contribution of heterotrophy to animal respiration (CHAR) was calculated using an improved method that included the proportionate contribution of zooplankton from all size classes. Results show that the proportionate effects of species, depth and bleaching treatments on coral feeding rates were not significantly different between ambient and enhanced zooplankton concentrations. Corals captured the same size and assemblage of zooplankton under all evaluated conditions, and preferentially captured plankters smaller than 400 µm. Feeding rates of Porites lobata increased with depth regardless of bleaching status. Feeding rates of Porites compressa increased with depth in non-bleached corals, but not in bleached corals. Within depth, feeding rates of bleached Montipora capitata increased, P. compressa decreased and P. lobata remained unchanged relative to non-bleached fragments. Therefore, the feeding response of corals to the same disturbance may vary considerably. Calculated CHAR values show that heterotrophic carbon from zooplankton plays a much larger role in the daily carbon budget of corals than previously estimated, accounting for 46% of some coral species' daily metabolic carbon requirements when healthy and 147% when bleached. Thus, heterotrophically acquired carbon made an important contribution to the daily carbon budget of corals under all experimental conditions. These results suggest that the relative importance of autotrophic and heterotrophic carbon to a coral's energetic needs is mediated by a coral's bleaching status and environment, and should be considered on a continuum, from 100% photoautotrophy to 100% heterotrophy.  相似文献   
642.
We examined the diurnal refuges occupied by the nocturnal squirrelfish, Holocentrus rufus, to describe refuges and the behavior associated with their use and to determine which, if any, refuge characteristics were selected. We tagged 21 H. rufus on two sites on a fringing reef in Barbados, West Indies, identified the refuges they used (n = 57), measured ten characteristics of each refuge and the surrounding microhabitat, and monitored their refuge use for 4 weeks. To evaluate refuge selection, we measured the same characteristics on a comparable number of unused potential refuges (n = 67) on the same reefs and used classification tree models to determine which characteristics separated used from unused refuges. Each fish used 1–9 refuges, which did not overlap among individuals and were defended against intrusion by conspecifics and some heterospecifics. Fish with more than one refuge frequently moved among them. There was strong site fidelity with no immigration of untagged fish or emigration of tagged fish on either reef during the study period and no additional refuges being occupied over the 4-week period. Refuges were primarily holes, open at one or two ends, which varied in size, distance from the reef edge, entrance orientation, and vertical relief at the entrance. Holes used as refuges differed significantly from unused holes mainly in characteristics related to the vertical position of their entrance, but the classification tree models differed for the two sites. This study provides the first detailed information on characteristics of daytime refuges used by a nocturnally active reef fish and the first evidence of selectivity of refuges. It suggests that the abundance and characteristics of holes on reefs could influence the density of H. rufus on natural reefs.  相似文献   
643.
The demographic responses of reef fish to their environment can be complex and in many cases, quite strong. Growth, mortality, longevity, and even reproductive effort have been demonstrated to vary for the same species of reef fish over scales of 100s to 1,000s of kilometers due to physiological and ecological interactions. Though few studies have explicitly documented it, this sort of habitat-mediated demography can also exist at very local scales. Here we present the results of a 2-year study of the bicolor damselfish, Stegastes partitus, in the Florida Keys, USA. We measured density and distribution, calculated key demographic rates (growth, survival, and fecundity), and characterized the environment (resident fish assemblage, substrate type and complexity, and food availability) of populations living in two adjacent but different habitats, the continuous fore reef and patchy back reef. Fish on the fore reef had an elevated growth rate and asymptotic size, increased mortality, and higher fecundity than fish on the back reef. We identified four potential causative mechanisms for these differences: food availability; competition; intraspecific density-dependent effects; and predation risk. Our data did not support an effect of either food availability or intraspecific density-dependence, but rather suggested that demographic responses are affected by both competition and predation risk.  相似文献   
644.
Despite the potential importance of predation as a process structuring coral reef fish communities, few studies have examined how the diet of piscivorous fish responds to fluctuations in the abundance of their prey. This study focused on two species of rock-cod, Cephalopholis cyanostigma (Valenciennes, 1828) and Cephalopholis boenak (Bloch, 1790) (Serranidae), and monitored their diet in two different habitats (patch and contiguous reef) at Lizard Island on the northern Great Barrier Reef, Australia, over a 2-year period. The abundance of the rock-cods and the abundance and family composition of their prey were monitored at the same time. Dietary information was largely collected from regurgitated samples, which represented approximately 60% of the prey consumed and were unbiased in composition. A laboratory experiment showed that fish were digested approximately four times faster than crustaceans, leading to gross overestimation of the importance of crustaceans in the diet. When this was taken into account fish were found to make up over 90% of the diet of both species. Prey fish of the family Apogonidae, followed by Pomacentridae and Clupeidae, dominated the diet of both species of rock-cod. The interacting effect of fluctuations in prey abundance and patterns of prey selection caused dietary composition to vary both temporally and spatially. Mid-water schooling prey belonging to the families Clupeidae and to a lesser extent Caesionidae were selected for over other families. In the absence of these types of prey, apogonids were selected for over the more reef-associated pomacentrids. A laboratory experiment supported the hypothesis that such patterns were mainly due to prey behaviour. Feeding rates of both species of rock-cod were much higher in summer than in winter, and in summer they concentrated on small recruit sized fish. However, there was little variation in feeding rates between habitats, despite apparent differences in prey abundance. In summary, our observations of how the feeding ecology of predatory fish responded to variation in prey abundance provide potential mechanisms for how predation may affect the community structure of coral reef fishes.  相似文献   
645.
We examined the maximum sustainable swimming speed of late-stage larvae of nine species of tropical reef fishes from around Lizard Island, Great Barrier Reef, Australia. Larvae were captured in light traps and were swum in flumes at different experimental swimming speeds (of 5 cm s−1 intervals) continuously for 24 h. Logistic regression was used to determine the speed at which 90% of larvae were able to maintain swimming, and this was used to indicate the maximum sustainable swimming speed for each species. Maximum sustainable swimming speeds varied among the species examined, with the lethrinid maintaining the fastest sustainable swimming speed (24 cm s−1), followed by the Pomacentridae (10-20 cm s−1) and the Apogonidae (8-12 cm s−1). U-crit (maximum speed) explained 64% of the variation in sustainable speed among species, whereas total length only explained 33% of the variation in sustained swimming. A regression fitted across species suggests that 50% U-crit is a good approximation of the speed able to be maintained by these larvae for 24 h. A model based on a cubic relationship between sustained swimming time and speed was found to be more successful than either length or U-crit as a method of estimating sustainable swimming speed for most of the species examined. Overall, we found that swimming speed is an important factor when considering the potential for active swimming behaviour to influence dispersal patterns, recruitment success and levels of self-recruitment in reef fish larvae and needs to be carefully considered in models of larval dispersal.  相似文献   
646.
The symbiotic association between corals and zooxanthellae has been a major contributing factor in the success of reef-building corals. Most of these endocellular microalgal symbionts belong to the dinoflagellate genus Symbiodinium. However, considerable genetic diversity was revealed within this taxon, as is evident in the several clades of Symbiodinium found in association with hermatypic corals all over the world. The coral reefs of Eilat (Aqaba), where winter temperature minima of 21 °C are close to threshold values that prevent reef development, are among the northernmost reefs in the world. Furthermore, due to the circulation patterns of the Gulf, the extremely high evaporation, and lack of any riverine inputs, the Gulf's waters are highly saline (40.5‰). In spite of the extreme location, a high diversity of coral species has been reported in this area. In this study, using PCR, we specifically amplified zooxanthellae 18S ribosomal DNA from symbionts of 11 coral species, and analyzed it with respect to RFLP and DNA sequence.Of the several clades described from the same coral hosts in other localities, only A and C were found in the present study. Symbiodinium populations in the host examined from Eilat were different relative to other parts of the world. This distribution is discussed in relation to reproduction strategy: broadcasting versus brooding. Based on our results, we suggest that clade A is transferred through a closed system. As mass bleaching in the Gulf has never been observed, we suggest that the adaptive mechanisms presumably favoring clade diversity were not yet significant in our relatively cool area.  相似文献   
647.
Large storm-relocated Porites coral blocks are widespread on the reef flats of Nansha area, southern South China Sea. Detailed investigations of coral reef ecology, geomorphology and sedimentation on Yongshu Reef indicate that such storm-relocated blocks originated from large Porites lutea corals growing on the spurs within the reef-front living coral zone. Because the coral reef has experienced sustained subsidence and reef development during the Holocene, dead corals were continuously covered by newly growing coral colonies. For this reason, the coral blocks must have been relocated by storms from the living sites and therefore the ages of these storm-relocated corals should approximate the times when the storms occurred. Rapid emplacement of these blocks is also evidenced by the lack of coral overgrowth, encrustation or subtidal alteration.U-series dating of the storm-relocated blocks as well as of in situ reef flat corals suggests that, during the last 1000 years, at least six strong storms occurred in 1064±30, 1210±5-1201±4, 1336±9, 1443±9, 1685±8-1680±6, 1872±15 AD, respectively, with an average 160-year cycle (110-240 years). The last storm, which occurred in 1872±15 AD, also led to mortality of the reef flat corals dated at ∼130 years ago. Thus, the storm had significant impacts on coral reef ecology and morphology.  相似文献   
648.
Summary Calcified demosponges (coralline sponges, sclero-sponges), the first metazoa producing a carbonate skeleton, used to be important reef building organisms in the past. The relatives of this group investigated here,Spirastrella (Acanthochaetetes) wellsi, Astrosclera willeyana andVaceletia cf.crypta, are restricted to cryptic niches of modern Pacific coral reefs and may be considered as “living fossils’. They are characterized by a basic biologically controlled metazoan biomineralization process. Each of the investigated taxa forms its calcareous basal skeleton in a highly specialized way. Moreover, each taxon secretes distinct Ca2+-binding macromolecules which were entrapped within the calcium carbonate crystals during skeleton formation. Therefore these Ca2+-binding macromolecules were also described as intracrystalline macromolecules. When isolated and separated by SDS polyacrylamide gel electrophoresis, the organic skeleton matrix of the three species revealed to be composed of a respective distinct array of EDTA-soluble proteins. A single protein of 41 kDa was detected inS. wellsi, two proteins of 38 and 120 kDa inA. willeyana, and four proteins of 18 kDa, 30 kDa, 33 kDa, and 37 kDa inVaceletia sp. When run on IEF gel, the Ca2+-binding proteins gave staining bands at pH values between 5.25 and 5.65. As proved by anin vitro mineralization assay, the extracted proteins effectively inhibit CaCO3 and SrCO3 precipitation, respectively, in a saturated solution. Biochemical properties and behavior of the extracted proteins strongly suggest that they are involved in crystal nucleation and skeleton carbonate formation within the calcified sponges studied here.  相似文献   
649.
This study investigates the nature and components of annual luminescent banding in massive Porites coral skeletons, with a view to refining the technique for using this banding to reconstruct past environmental conditions. Three-dimensional excitation-emission-matrix spectroscopy and optical fibre beam delivery have been used to investigate the luminescence properties of the bright and dull bands of solid coral. Six characteristic excitation/emission peaks have been identified: 280/450–600, 340/450, 370/470, 390/485, 420/505 and 450/530 nm. The first peak corresponds to protein-type fluorescence. The others are characteristic of humic acid luminescence. The difference in luminescence intensity between bright and dull bands has been quantified and characterised spectroscopically. The luminescence of the bright bands is up to 25% more intense than their neighbouring dull bands with the greatest increase in relative intensity in the long wavelength emission region, between 500 and 600 nm. The contribution of long-lived phosphorescence to the total luminescence intensity has been determined by time-resolved measurements on the 100 ms timescale. Both bright and dull bands show long-lived phosphorescence with decay times up to 1.5 s. This phosphorescence accounts for about 10% of the total luminescence intensity of bright bands. The difference in phosphorescence intensity between bright and dull bands is substantially greater than the difference in total luminescence intensity: the phosphorescence of bright bands is up to twice as intense as that of dull bands. This suggests that phosphorescence plays an important role in defining luminescent banding in coral. Furthermore, the large observable difference in phosphorescence between bright and dull bands indicates that measurement of phosphorescence profiles across growth bands in corals may prove to be a more sensitive indicator of past environmental conditions than measurements of total luminescence. Received: 18 March 1999 / Accepted: 20 December 1999  相似文献   
650.
 Investigation of the life history of corals is hampered by an inability to identify early recruits. In this study, the pattern of formation and morphology of the juvenile skeletons of three laboratory-reared pocilloporids, Seriatopora hystrix, Stylophora pistillata and Pocillopora damicornis, were compared to determine whether they could be reliably distinguished. The pattern of skeleton formation, including the origin and structure of the septa, columella and corallite wall was similar in all species. Following the completion of the primary corallite wall after 4–5 days, these species could be identified by differences in the diameter of the primary corallite. The mean diameter (±SE) of each species differed markedly: S. hystrix 400 ± 2.7 μm, range 325–450 μm; S. pistillata 505 ± 3.5 μm, range 400–550 μm; P. damicornis 697 ± 7.5 μm, range 492–885 μm. Values for the primary corallite diameter overlapped in only 3% of samples, demonstrating the potential utility of this feature as a tool for classifying recruits obtained from the field. Accepted: 4 January 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号