首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   703篇
  免费   75篇
  国内免费   9篇
  2023年   8篇
  2022年   9篇
  2021年   23篇
  2020年   30篇
  2019年   36篇
  2018年   28篇
  2017年   37篇
  2016年   20篇
  2015年   29篇
  2014年   42篇
  2013年   73篇
  2012年   18篇
  2011年   23篇
  2010年   27篇
  2009年   31篇
  2008年   22篇
  2007年   33篇
  2006年   36篇
  2005年   26篇
  2004年   24篇
  2003年   18篇
  2002年   28篇
  2001年   14篇
  2000年   11篇
  1999年   11篇
  1998年   17篇
  1997年   6篇
  1996年   10篇
  1995年   11篇
  1994年   7篇
  1993年   10篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   8篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
排序方式: 共有787条查询结果,搜索用时 15 毫秒
51.
Expression and regulation of peroxiredoxin 5 in human osteoarthritis   总被引:8,自引:0,他引:8  
Reactive oxygen species (ROS) are implicated in the pathogenesis of osteoarthritis (OA). However, little is known about the antioxidant defence system in articular cartilage. We investigated the expression and regulation of peroxiredoxin 5 (PRDX5), a newly discovered thioredoxin peroxidase, in human normal and osteoarthritic cartilage. Our results show that human cartilage constitutively expresses PRDX5. Moreover, the expression is up-regulated in OA. Inflammatory cytokines tumour necrosis factor alpha and interleukin 1 beta contribute to this up-regulation by increasing intracellular ROS production. The present study suggests that PRDX5 may play a protective role against oxidative stress in human cartilage.  相似文献   
52.
The aim of this study was to develop a method for fractionation of articular chondrocytes from the entire thickness of the tissue. Isolated chondrocytes from rabbit articular cartilage fractionated by centrifugation in a discontinuous Percoll gradient resulted in four cell fractions with two differing properties. The lowest-density fraction consisted mainly of large cells with small nuclei proliferated actively, maintained the chondrocytic phenotype, and secreted larger amounts of proteoglycan. In contrast, the highest-density fraction consisted of small cells with large nuclei proliferated slowly, did not express the chondrocytic phenotype, and produced larger amounts of interleukin 1-induced nitric oxide. Comparing our results with other previous reports, we find that fraction 1 cells are likely originated from the deep layer of the articular cartilage, whereas fraction 4 cells are tentatively categorized as chondrocytes from the superficial layer of cartilage. Centrifugal fractionation of articular chondrocytes via Percoll density gradient permits clear separation of these heterogeneous cells into different phenotypic populations and allows distinguishing of cells from the different layers of articular cartilage. This simple novel method will provide ready separation of articular chondrocytes for the investigation of the pathogenesis of articular cartilage.  相似文献   
53.
Articular cartilage exhibits little intrinsic repair capacity, and new tissue engineering approaches are being developed to promote cartilage regeneration using cellular therapies. The goal of this study was to examine the chondrogenic potential of adipose tissue-derived stromal cells. Stromal cells were isolated from human subcutaneous adipose tissue obtained by liposuction and were expanded and grown in vitro with or without chondrogenic media in alginate culture. Adipose-derived stromal cells abundantly synthesized cartilage matrix molecules including collagen type II, VI, and chondroitin 4-sulfate. Alginate cell constructs grown in chondrogenic media for 2 weeks in vitro were then implanted subcutaneously in nude mice for 4 and 12 weeks. Immunohistochemical analysis of these samples showed significant production of cartilage matrix molecules. These findings document the ability of adipose tissue-derived stromal cells to produce characteristic cartilage matrix molecules in both in vitro and in vivo models, and suggest the potential of these cells in cartilage tissue engineering.  相似文献   
54.
Fluctuations in intracellular free calcium concentration ([Ca2+]i) is thought to be one mechanism by which cells transduce mechanical signals into biological responses. Primary cultures of bovine articular chondrocytes (BAC) respond to oscillating fluid flow with a transient rise in [Ca2+]i. However, specific down-stream effects of [Ca2+]i on gene expression and phenotype in BAC remain to be defined. The present work was designed to determine whether [Ca2+]i mobilization regulates aggrecan mRNA levels. [Ca2+]i was transiently elevated by exposing BAC to the [Ca2+]-specific ionophore, ionomycin. The results show that ionomycin increases [Ca2+]i in a dose-dependent fashion. Semi-quantitative real time (RT)-PCR was used to study the effects of increased [Ca2+]i on steady state levels of aggrecan mRNA. Four hours after a brief exposure to 1.5 microM ionomycin, BAC displayed a nearly four-fold decrease in aggrecan mRNA levels compared to control cells. This effect of ionomycin on aggrecan mRNA was no longer evident 6 or 10 h later. Despite previous observations that oscillating fluid flow elicits increased [Ca2+]i in BAC, it did not affect aggrecan mRNA levels. Taken together, these data suggest that ionomycin-induced [Ca2+]i fluctuations regulate aggrecan mRNA levels, but that flow induced [Ca2+]i fluctuations do not.  相似文献   
55.
Bone and cartilage consist of different organic matrices, which can both be mineralized by the deposition of nano-sized calcium phosphate particles. We have studied these mineral particles in the mineralized cartilage layer between bone and different types of cartilage (bone/articular cartilage, bone/intervertebral disk, and bone/growth cartilage) of individuals aged 54 years, 12 years, and 6 months. Quantitative backscattered electron imaging and scanning small-angle X-ray scattering at a synchrotron radiation source were combined with light microscopy to determine calcium content, mineral particle size and alignment, and collagen orientation, respectively. Mineralized cartilage revealed a higher calcium content than the adjacent bone (p<0.05 for all samples), whereas the highest values were found in growth cartilage. Surprisingly, we found the mineral platelet width similar for bone and mineralized cartilage, with the exception of the growth cartilage sample. The most striking result, however, was the abrupt change of mineral particle orientation at the interface between the two tissues. While the particles were aligned perpendicular to the interface in cartilage, they were oriented parallel to it in bone, reflecting the morphology of the underlying organic matrices. The tight bonding of mineralized cartilage to bone suggests a mechanical role for the interface of the two elastically different tissues, bone and cartilage.  相似文献   
56.
57.
Calculations are presented of the induced electric fields and current densities in the cartilage of the knee produced by a coil applicator developed for applying pulsed magnetic fields to osteoarthritic knees. This applicator produces a sawtooth-like magnetic field waveform composed of a series of 260-micros pulses with a peak to peak magnitude of approximately 0.12 mT in the cartilage region. The simulations were performed using a recently developed 3 dimensional finite difference frequency domain technique for solving Maxwell's equations with an equivalent circuit model. The tissue model was obtained from the anatomically segmented human body model of Gandhi. The temporal peak electric field magnitude was found to be -153 mV/m, averaged within the medial cartilage of the knee for the typical dB/dt excitation levels of this coil. The technique can be extended to analyze other excitation waveforms and applicator designs.  相似文献   
58.
The dorsal fin engine of the seahorse (Hippocampus sp.)   总被引:4,自引:0,他引:4  
The muscles, fin ray joints, and supporting structures underlying the dorsal fin are described for two seahorse species: Hippocampus zosterae and Hippocampus erectus. A fan-shaped array of cartilaginous bones, the pterigiophores, form the internal supporting structure of the dorsal fin. Each pterigiophore is composed of a proximal radial that extends from a vertebra to the dorsal side of the animal, where it fuses to a middle radial. The middle radials fuse with each other to form a dorsal ridge upon which sit the spheroidal distal radials. Each distal radial articulates with a fin ray on its dorsal side and is attached to the dorsal ridge on its ventral side by a material that has been histologically identified as elastic cartilage. Together these connections form a two-axis joint that permits elevation, depression, and inclination of the ray. Each fin ray is actuated by two bilateral pairs of muscles, an anterior pair of inclinators, and a posterior pair of depressors. The anteriormost fin ray is actuated by three bilateral pair of muscles, the inclinators, the depressors, and a pair of elevator muscles that are positioned anterior to the inclinators. Preliminary examinations of the ray joints of the pectoral and anal fins of adult H. zostera and the pectoral fins of newborn H. erectus revealed structures similar to that seen in the dorsal fins. To further explore the structure and function of the dorsal fin gross dissections and simple functional tests were performed on H. erectus and H. barbouri and behavioral observations were made of all three species plus Hippocampus kuda.  相似文献   
59.
A method for cryopreserving a 100-microm-thick sheet of tissue produced by cultured rabbit chondrocytes has been developed. The method maintains cell viability and avoids tissue fracture and degradation of mechanical properties. A slow-freeze, fast-thaw procedure with 2 M Me(2)SO as the cryoprotectant resulted in no tissue fracture and approximately 90% viable cells after storage in culture flasks at -80 degrees C. The cells in the retrieved tissue remained responsive to IL-1beta, and tensile and fracture toughness properties of the tissue were not degraded by cryopreservation.  相似文献   
60.
To show the relationships of calcium accumulation in the thoracic aorta to the other tissues, calcium contents were determined with a microwave-induced plasma-atomic emission spectrometer on arteries, veins, cartilages, ligaments, and bones. These tissues were resected from 18 individuals, consisting of 11 men and 7 women who died in the age range 59–91 yr. As thoracic and abdominal aortas are routinely used for radiographic examination of arterial calcification, they appear to be standard tissues of the calcium accumulation. The calcium accumulations were determined in the femoral artery, the superior and inferior venae cavae, the internal jugular vein, cartilages of the articular disk of the temporomandibular joint and the intervertebral disk, both the ligaments of the anterior cruciate ligament and the ligamentum capitis femoris, and the calcaneus, in contrast with the thoracic aorta. As calcium increased in the thoracic aorta, it increased in the femoral artery, the articular disk of the temporomandibular joint, the intervertebral disk, both ligaments of the anterior cruciate ligament, and the ligamentum capitis femoris, but it did not increase in veins, such as the superior and inferior venae cavae and the internal jugular vein. In contrast, it decreased in the calcaneus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号