首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13117篇
  免费   832篇
  国内免费   369篇
  2023年   106篇
  2022年   138篇
  2021年   245篇
  2020年   250篇
  2019年   321篇
  2018年   392篇
  2017年   273篇
  2016年   302篇
  2015年   350篇
  2014年   673篇
  2013年   925篇
  2012年   548篇
  2011年   780篇
  2010年   661篇
  2009年   672篇
  2008年   698篇
  2007年   599篇
  2006年   622篇
  2005年   541篇
  2004年   520篇
  2003年   481篇
  2002年   421篇
  2001年   226篇
  2000年   199篇
  1999年   253篇
  1998年   281篇
  1997年   224篇
  1996年   177篇
  1995年   224篇
  1994年   211篇
  1993年   179篇
  1992年   176篇
  1991年   134篇
  1990年   140篇
  1989年   132篇
  1988年   118篇
  1987年   111篇
  1986年   96篇
  1985年   124篇
  1984年   158篇
  1983年   172篇
  1982年   162篇
  1981年   104篇
  1980年   66篇
  1979年   57篇
  1978年   34篇
  1977年   16篇
  1976年   9篇
  1975年   6篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 406 毫秒
31.
Blue bacteriorhodopsin was prepared by electrodialysis, cation-exchange chromatography and acidification. The electrooptical properties of these preparations compared to those of the native purple bacteriorhodopsin suggest that the blue bacteriorhodopsin has a smaller induced dipole moment than the native purple bacteriorhodopsin and that bound cations in the native bacteriorhodopsin stabilize the protein conformation in the membrane.Purple bacteriorhodopsin was regenerated by addition of potassium, magnesium or ferric ions to blue bacteriorhodopsin. Both spectrscopically and electrooptically the potassium- and ferric-regenerated samples are different from the native purple state. Although the magnesium-regenerated sample is spectroscopically similar to the native purple bacteriorhodopsin, the electrooptical properties are rather similar to those of the cation-depleted blue sample, suggesting that it is very difficult to re-stabilize protein structures once cations are depleted.  相似文献   
32.
Solubilisation of a Glutamate Binding Protein from Rat Brain   总被引:2,自引:2,他引:0  
Rat brain synaptic plasma membranes were solubilised in either 1% Triton X-100 or potassium cholate and subjected to batch affinity adsorption on L-glutamate/bovine serum albumin reticulated glass fibre. The fibre was extensively washed, and bound proteins eluted with 0.1 mM L-glutamate in 0.1% detergent, followed by repeated dialysis to remove the glutamate from the eluted proteins. Aliquots of the dialysed extracts were assayed for L-[3H]glutamate binding activity in the presence or absence of 0.1 mM unlabelled L-glutamate (to define displaceable binding). Incubations were conducted at room temperature and terminated by rapid filtration through nitrocellulose membranes. Binding to solubilised fractions could be detected only following affinity chromatography. Binding was saturable and of relatively low affinity: KD = 1.0 and 1.8 microM for Triton X-100 and cholate extracts, respectively. The density of binding sites was remarkably high: approximately 18 nmol/mg protein for Triton X-100-solubilised preparations, and usually double this when cholate was employed. Analysis of structural requirements for inhibition of binding revealed that only a very restricted number of compounds were effective, i.e., L-glutamate, L-aspartate, and sulphur-containing amino acids. Binding was not inhibited significantly by any of the selective excitatory amino acid receptor agonists--quisqualate, N-methyl-D-aspartate, or kainate. The implication from this study is that the glutamate binding protein is similar if not identical to one previously isolated and probably is not related to the pharmacologically defined postsynaptic receptor subtypes, unless solubilisation of synaptic membranes resulted in major alterations to binding site characteristics. Since solubilisation with Triton X-100 is known to preserve synaptic junctional complexes, it seems likely that the origin of the glutamate binding protein may be extrajunctional, although its functional role is unknown.  相似文献   
33.
Summary Expression of the three chlorophyll a/b binding protein (cab) genes of Arabidopsis thaliana was studied in transformed tobacco tissues. For each cab gene, approximately 1000 bp of the promoter region plus a portion of the structural gene was inserted into a promoter-expression vector such that a translational fusion between the cab gene and the promoter-less chloramphenicol acetyltransferase (cat) gene was formed. The constructed molecules were introduced into either cultured tobacco cells or tobacco leaves and the promoter activity was monitored as chloramphenicol acetyltransferase activity. The light-grown tissues exhibited 1.5- to 60-fold greater promoter activity than did dark-grown tissues. Expression of the cab promoters was tissue specific: activities were much stronger in green leaves than other tissues. The cab promoters were almost equally active in transformed calli or shoots derived from leaves. However, in cultured tobacco cells, one promoter was two to three times stronger than the other two. The chimeric gene fusion, cab-cat, segregated in the F1 generation as a dominant Mendelian trait.  相似文献   
34.
35.
Spinach-leaf ferredoxin was identified as a calcium-binding protein by 45Ca autoradiography on nitrocellulose membranes and with the cationic carbocyanine dye 1-ethyl-2-[3-(1-ethylnaphtho[1,2-d]thiazolin-2-ylidene)-2-methylpropenyl] naphtho[1,2-d]thiazolium bromide (stains-all). Binding of 45Ca was observed at pH 6.8 and pH 7.8 and in the presence of 5 mM and 20 mM MgCl2. At the higher MgCl2 concentration the Ca2+-binding capacity is reduced. Only micromolar concentrations of LaCl3, however, are required to achieve a similar effect. Both the oxidized and reduced forms of ferredoxin bind calcium.Abbreviations PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate - stains-all 1-ethyl-2-[3-(1-ethylnaphtho[1,2-d]thiazolin-2-ylidene)-2-methylpropenyl] naptho[1,2-d]thiazolium bromide  相似文献   
36.
Summary Fluorescein or rhodamine conjugates of seventeen different lectins were tested for their ability to label the plasma membrane of live plant protoplasts. During the investigation, a strong effect of calcium was observed on the binding of several lectins to protoplasts derived from suspension cultured rose cells (Rosa sp. Paul's Scarlet). The binding of these lectins was increased by elevating the calcium concentration from 1 to 10 mM in the buffer. Other divalent cations had variable, but similar, effects on lectin binding. The mechanism of this effect appeared to involve the protoplast surface rather than the lectins. Although the cell wall-degrading enzymes used to isolate protoplasts had generally no effect on lectin binding, one clear exception was observed. Binding ofArachis hypogaea agglutinin was markedly reduced on protoplasts isolated with Driselase as compared to protoplasts isolated with a combination of Cellulysin and Pectolyase Y-23. Although most of the lectins that labeled protoplasts derived from cultured rose cells or from corn root cortex (Zea mays L. WF9 × Mo17) had specificities for galactose or N-acetylgalactosamine, some differences in protoplast labeling between lectins of the same saccharide specificity were observed. Two different analyses of the interaction betweenRicinus communis agglutinin and rose protoplasts showed that binding was cooperative with an apparent association constant of 7.2 × 105M–1 or 9.8 × 105M–1 with a maximum of approximately 108 lectin molecules bound per protoplast. Treatment of protoplasts with glycosidases which hydrolyze either N- or O-glycosidic linkages of glycoproteins slightly enhanced labeling of protoplasts byRicinus communis agglutinin. Interpretation of these results are discussed.Abbreviations MPR medium, minimal organic medium (Nothnagel andLyon 1986) - APA Abrus precatorius agglutinin - CSA Cytisus sessilifolius agglutinin - ECA Erythrina cristagalli agglutinin - GS-I Griffonia simplicifolia agglutinin - LcH Lens culinarus agglutinin - PNA Arachis hypogaea agglutinin - SBA Glycine max agglutinin - VAA Viscum album agglutinin - VFA Vicia faba agglutinin - WGA Triticum vulgaris agglutinin - Con A Canavalia ensiformis agglutinin - HPA Helix pomatia agglutinin - TPA Tetragonolobus purpureas agglutinin - RCA Ricinus communis agglutinin - DBA Dolichos biflorus agglutinin - SJA Sophora japonica agglutinin - BPA Bauhinia purpurea agglutinin - FITC fluorescein isothiocyanate - Ga1NAc N-acetylgalactosamine - FDA fluorescein diacetate - 2-O-Me-D-Fuc 2-O-methyl-D-fucose Parts of the work presented here are also submitted in partial fulfillment of requirements for the Ph.D. degree.  相似文献   
37.
Binding of gossypol by gossypin and congossypin and their succinylated and sulfhydryl group-blocked derivatives has been measured. The binding by gossypin and congossypin is characterized by weak interaction. Succinylation of gossypin decreases the binding affinity whereas that of congossypin increases it. Blocking of sulfhydryl groups of both the proteins does not significantly affect gossypol binding, Succinylation dissociates gossypin and causes conformational changes whereas it does not dissociate congossypin but causes conformational changes. Sulfhydryl group blocking does not dissociate gossypin or congossypin, nor does it cause any conformational changes.  相似文献   
38.
On binding toVicia faba lectin, the fluorescence of 4-methylumbelliferyl-α-D-glucoPyranoside was quantitatively quenched showing that the interaction of 4-methylumbelliferyl-α-D-glucoPyranoside took Place in a binding environment. The binding of the fluorescent sugar was saccharide sPecific as evidenced by the reversal of 4-methylumbelliferyl-α-D-glucoPyranoside fluorescence quenching by D-fructose. The association constant,K a, values for the 4-methylumbelliferyl-α-D-glucoPyranoside was determined by comPetition study emPloying reversal of fluorescence quenching of 4-methylumbelliferyl-α-D-glucoPyranoside by D-fructose. TheK a value obtained for D-fructose was 1.07 ±0.03 X 104 M-1 and for 4-methylumbelliferyl-α-D-glucoPyranoside was 1.60 ±0.05 X 104 M-1 at 15°C. TheK a values of 2.51 ±0.06 X 104M-1, l.26 ±0.02 X 104 M-1 and 0.56 ±0.01 X 104M-1, resPectively at 10°, 20° and 30°C were obtained from the ChiPman equation. The relative fluorescence quenching, ΔF a, at infinite concentration of the free saccharide sites ofVicia faba lectin [P′] was 93.5% at 30°C and the binding constant for 4-methylumbelliferyl-α-D-glucoPyranoside lectin interaction as derived by Yank and Hanaguchi equation was 0.63 ±0.01 X 104M-1.  相似文献   
39.
Summary Phloridzin-insensitive, Na+-independentd-glucose uptake into isolated small intestinal epithelial cells was shown to be only partially inhibited by trypsin treatment (maximum 20%). In contrast, chymotrypsin almost completely abolished hexose transport. Basolateral membrane vesicles prepared from rat small intestine by a Percoll® gradient procedure showed almost identical susceptibility to treatment by these proteolytic enzymes, indicating that the vesicles are predominantly oriented outside-out. These vesicles with a known orientation were employed to investigate the kinetics of transport in both directions across the membrane. Uptake data (i.e. movement into the cell) showed aK t of 48mm and aV max of 1.14 nmol glucose/mg membrane protein/sec. Efflux data (exit from the cell) showed a lowerK t of 23mm and aV max of 0.20 nmol glucose/mg protein/sec.d-glucose uptake into these vesicles was found to be sodium independent and could be inhibited by cytochalasin B. TheK t for cytochalasin B as an inhibitor of glucose transport was 0.11 m and theK D for binding to the carrier was 0.08 m.d-glucose-sensitive binding of cytochalasin B to the membrane preparation was maximized withl- andd-glucose concentrations of 1.25m. Scatchard plots of the binding data indicated that these membranes have a binding site density of 8.3 pmol/mg membrane protein. These results indicate that the Na+-independent glucose transporter in the intestinal basolateral membrane is functionally and chemically asymmetric. There is an outward-facing chymotrypsin-sensitive site, and theK t for efflux from the cell is smaller than that for entry. These characteristics would tend to favor movement of glucose from the cell towards the bloodstream.  相似文献   
40.
Subcellular Location and Neuronal Release of Diazepam Binding Inhibitor   总被引:6,自引:0,他引:6  
Diazepam binding inhibitor (DBI), a peptide located in CNS neurons, blocks the binding of benzodiazepines and beta-carbolines to the allosteric modulatory sites of gamma-aminobutyric acid (GABAA) receptors. Subcellular fractionation studies of rat brain indicate that DBI is compartmentalized. DBI-like immunoreactivity is highly enriched in synaptosomes obtained by differential centrifugation in isotonic sucrose followed by a Percoll gradient. In synaptosomal lysate, DBI-like immunoreactivity is primarily associated with synaptic vesicles partially purified by differential centrifugation and continuous sucrose gradient. Depolarization induced by high K+ levels (50 mM) or veratridine (50 microM) released DBI stored in neurons of superfused slices of hypothalamus, hippocampus, striatum, and cerebral cortex. The high K+ level-induced release is Ca2+ dependent, and the release induced by veratridine is blocked by 1.7 microM tetrodotoxin. Depolarization released GABA and Met5-enkephalin-Arg6-Phe7 together with DBI. DBI is also released by veratridine depolarization, in a tetrodotoxin-sensitive fashion, from primary cultures of cerebral cortical neurons, but not from cortical astrocytes. Depolarization fails to release DBI from slices of liver and other peripheral organs. These data support the view that DBI may be released as a putative neuromodulatory substance from rat brain neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号