首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   9篇
  国内免费   34篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   13篇
  2014年   8篇
  2013年   8篇
  2012年   10篇
  2011年   11篇
  2010年   12篇
  2009年   23篇
  2008年   25篇
  2007年   22篇
  2006年   12篇
  2005年   16篇
  2004年   17篇
  2003年   10篇
  2002年   14篇
  2001年   14篇
  2000年   7篇
  1999年   15篇
  1998年   9篇
  1997年   11篇
  1996年   8篇
  1995年   5篇
  1994年   11篇
  1993年   6篇
  1992年   9篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1983年   2篇
  1980年   1篇
  1977年   1篇
排序方式: 共有343条查询结果,搜索用时 468 毫秒
331.
Structural features of plant chitinases and chitin-binding proteins   总被引:10,自引:0,他引:10  
Jaap J. Beintema   《FEBS letters》1994,350(2-3):159-163
Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains, of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now, and are used to describe the structures of the other ones. Conserved positions of Cys residues can be taken as evidence for identically located disulfide bridges or cysteine residues. The current classification of chitinases is unsatisfactory and needs to be replaced by an evolutionarily more correct one. As the currently known three-dimensional structures of chitinases are those from barley and the rubber tree, Hevea brasiliensis, it is proposed to adopt the designation b-type (classes I, II and IV) and h-type (classes III and V) chitinases, respectively.  相似文献   
332.
The LysM domain is a highly conserved carbohydrate-binding module that recognizes polysaccharides containing N-acetylglucosamine residues. LysM domains are found in a wide variety of extracellular proteins and receptors from viruses, bacteria, fungi, plants and animals. LysM proteins are also present in many species of mammalian fungal pathogens, although a limited number of studies have focused on the expression and determination of their putative roles in the infection process. This review summarizes the current knowledge and recent studies on LysM proteins in the main morphological groups of fungal pathogens that cause infections in humans and other mammals. Recent advances towards understanding the biological functions of LysM proteins in infections of mammalian hosts and their use as potential targets in antifungal strategies are also discussed.  相似文献   
333.
Abstract Crude protein preparations from the culture filtrate of the filamentous fungus Aphanocladium album , a hyperparasite of rust fungi, strongly inhibited growth of a strain of the fungus Nectria haematococca pathogenic on pea. Crude protein from the filtrate of the variant E3 of A. album , hyperproducing chitinase, was less inhibitory than crude protein from the filtrate of the wild-type strain E1. The antifungal potential of a purified chitinase from A. album , called chitinase 1, was compared to that of a plant chitinase with known antifungal activity, obtained from pea ( Pisum sativum ). Although purified chitinase 1 of A. album degraded chitin more completely than did pea chitinase, it did not inhibit growth of N. haematococca , either alone or in the presence of a pea β-1,3-glucanase. Furthermore, chitinase 1 from A. album failed to enhance the antifungal activity of pea chitinase. These results indicate that the extracellular proteins of A. album inhibit growth of some fungi by other means than through their chitinase 1 activity.  相似文献   
334.
B-3 fungal isolate was isolated from soil samples of Gwangju in Korea. Based on morphological and phylogenetic analysis, it was designated as Lecanicillium antillanum B-3 (syn. Verticillium antillanum B-3). The fungus was a chitinolytic-nematophagous microorganism. B-3 chitinase activity from 0.5% swollen chitin broth medium reached the highest level on the sixth day and then plateaued until 12 days. B-3 isolate showed the high rate of parasitism on Meloidogyne incognita eggs with more than 90% infection rate on the third day after treatment. B-3 crude chitinase damaged the eggshell structures more than 78% based on lactoglycerol staining data at a final protein concentration of 14.6 µg mL?1 on the fourth day following treatment. Partially purified chitinase with molecular 37 kDa from DEAE-Sephadex chromatography also showed damaging effect on the eggs. These results suggested that chitinase from B-3 isolate was responsible for degradation of M. incognita eggshell structures.  相似文献   
335.
Stipe elongation growth is one of the remarkable characteristics of the growth and development of basidiomycete fruiting bodies. Stipe elongation is resulting from the lateral extension of stipe cells. The stipe cell is enclosed within a thin cell wall which must be loosened to expand the wall surface area for accommodation of the enlarged protoplast as the stipe cell elongates. In fungal cell walls, chitin molecules associate with each other by interchain hydrogen bonds to form chitin microfibrils which are cross-linked covalently to matrix polysaccharides. Early, some scientists proposed that stipe elongation was the result of enzymatic degradation of wall polysaccharides, whereas other researchers suggested that stipe elongation resulted from nonhydrolytic disruption of the hydrogen bonds by turgor pressure between wall polysaccharides. Recently, an extensometer was used to determine stipe wall extension for elucidation of the molecular mechanism of stipe elongation. In Coprinopsis cinerea, the native stipe cell wall is induced to extend by acidic buffers and the acid-induced native wall extension activity is located in the growing apical stipe region. A series of current experiments indicate that chitinases play a key role in the stipe wall extension, and β-glucanases mainly function in the wall remodeling for regulation of stipe wall expansibility to cooperate with chitinase to induce stipe wall extension. In addition, fungal expansin-like proteins can bind to chitin to enhance chitin hydrolysis, and their expression pattern is consistent with the stipe elongation growth, which is suggested to play an auxiliary role in the stipe wall extension.  相似文献   
336.
337.
338.
A true chitinase, i.e. a poly-β-1, 4-N-acetylglucosaminidase specific of the hydrolosis of chitin and thus devoid of any lysozymic activity, has been localized in the gastric mucosa extracts and/or in the pancreas extracts of some vertebrate species (frog, lizard and mammals), the diet of which contains chitin. This observation confirms the relation existing between the feeding habits of vertebrates and the ability to synthesize specific chitinolytic enzymes. Furthermore, chitinolytic activity bound to lysozomic activity has been observed in the extracts of other organs such as the spleen of the carp and the kidneys of the dog, the rabbit and the ferret. In these cases, the chitinolytic activity seems to be due to the presence of lysozymes with different degrees of activity on the β-1, 4-N-acetylglucosaminic bounds of chitin.  相似文献   
339.
The optimization studies for production of chitinase were carried out by response surface methodology (RSM) based on statistics experimental design using three substrates, which were wheat, rice and red gram bran. 24 full factorial central composite design was applied to evaluate optimal combinations of variables. These variables were chitin concentration, initial moisture content, inoculum level, and incubation time. The results of second order polynomial showed that all four variables had significant effect on chitinase production. Maximum chitinase activity was recorded for wheat bran (2443.23 U g−1) than rice (1216.65 U g−1) and red gram bran (961.32 U g−1). An overall 3-fold increase in chitinase activity was achieved using optimized strategies of RSM. Growth of the fungus on all bran particles have been visualized by scanning electron microscopy. These results indicated the potential of Penicillium ochrochloron for economical production of chitinase using agricultural residues. TLC and HPLC analysis of colloidal chitin hydrolysate with partially purified chitinases revealed that the major reaction product was monomeric GlcNAc indicating the potential of these enzymes for efficient production of GlcNAc.  相似文献   
340.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号