首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2132篇
  免费   134篇
  国内免费   54篇
  2024年   6篇
  2023年   29篇
  2022年   47篇
  2021年   63篇
  2020年   83篇
  2019年   93篇
  2018年   80篇
  2017年   97篇
  2016年   63篇
  2015年   66篇
  2014年   123篇
  2013年   214篇
  2012年   102篇
  2011年   99篇
  2010年   83篇
  2009年   77篇
  2008年   90篇
  2007年   69篇
  2006年   71篇
  2005年   63篇
  2004年   50篇
  2003年   58篇
  2002年   51篇
  2001年   42篇
  2000年   32篇
  1999年   25篇
  1998年   31篇
  1997年   31篇
  1996年   22篇
  1995年   32篇
  1994年   31篇
  1993年   18篇
  1992年   22篇
  1991年   13篇
  1990年   23篇
  1989年   14篇
  1988年   25篇
  1987年   14篇
  1986年   12篇
  1985年   22篇
  1984年   30篇
  1983年   21篇
  1982年   17篇
  1981年   18篇
  1980年   8篇
  1979年   8篇
  1978年   6篇
  1976年   9篇
  1974年   4篇
  1973年   4篇
排序方式: 共有2320条查询结果,搜索用时 15 毫秒
91.
We introduce a generic, simple, and inexpensive method for performing microbiological, enzymatic, or inorganic catalysis with solids using standard histology and microbiology laboratory equipment. Histology cassettes were used to standardize hydrodynamic conditions and to protect the catalysts and their solid supports. Histology cassettes have the following advantages: they are readily available, inexpensive, solvent and acid resistant, automatable, and the slots in the cassette walls allow liquid to circulate freely. Standard Erlenmeyer flasks were used as reaction vessels. We developed a new camera to observe the movement and position of the histology cassettes as well as the liquid in the Erlenmeyer flasks. The camera produces a stable image of the rotating liquid in the Erlenmeyer flask. This visualization method revealed that in a 250?ml Erlenmeyer flask, stable operating conditions are achieved at a shaking frequency of 300?rpm and a fill volume of 30?ml. In vessels with vertical walls, such as beakers or laboratory bottles, the movement of the histology cassette is not reproducible. Mass transfer characterization using a biological model system and the chemical sulfite-oxidation method revealed that the histology cassette does not influence gas-liquid mass transfer.  相似文献   
92.
Sperm competition is a powerful and widespread evolutionary force that drives the divergence of behavioural, physiological and morphological traits. Elucidating the mechanisms governing differential fertilization success is a fundamental question of sperm competition. Both sperm and nonsperm ejaculate components can influence sperm competition outcomes. Here, we investigate the role of a nonsemen copulatory fluid in sperm competition. Male Japanese quail possess a gland that makes meringue‐like foam. Males produce and store foam independent of sperm and seminal fluid, yet transfer foam to females during copulation. We tested whether foam influenced the outcome of sperm competition by varying foam state and mating order in competitive matings. We found that the presence of foam from one male decreased the relative fertilization success of a rival, and that foam from a given male increased the probability he obtained any fertilizations. Mating order also affected competitive success. Males mated first fertilized proportionally more eggs in a clutch and had more matings with any fertilizations than subsequent males. We conclude that the function of foam in sperm competition is mediated through the positive interaction of foam with a male's sperm, and we speculate whether the benefit is achieved through improving sperm storage, fertilizing efficiency or retention. Our results suggest males can evolve complex strategies to gain fertilizations at the expense of rivals as foam, a copulatory fluid not required for fertilization, nevertheless, has important effects on reproductive performance under competition.  相似文献   
93.
Computational fluid dynamics (CFD) modelling based on a commercial package, FLUENT, has been used in the present study. The primary aim of this study is to develop a novel implant by employing CFD techniques. Firstly, CFD analyses on the best design commercially available, which is the Ahmed Glaucoma Valve (AGV®), are accomplished. In the light of the results, the new design focus is selected as the valve. The new design is analysed using GAMBIT and FLUENT software. CFD analyses of the new design and the AGV® are compared and the strengths of the new design are revealed. The results are also compared with the experimental studies AGV® in the literature. It is deduced that the proposed model shows a nonlinear pressure drop response, which is quite similar to that of AGV®. The optimum combination would be a flow rate of 2.5 μl/min and a pressure drop of 1054.58 Pa for the proposed model.  相似文献   
94.
A computational fluid dynamics (CFD) method is presented to investigate the flow of cerebro-spinal fluid (CSF) in the cerebral aqueduct. In addition to former approaches exhibiting a rigid geometry, we propose a model which includes a deformable membrane as the wall of this flow channel. An anatomical shape of the aqueduct was computed from magnetic resonance images (MRI) and the resulting meshing was immersed in a marker-and-cell (MAC) staggered grid for to take into account fluid–structure interactions. The time derivatives were digitized using the Crank–Nicolson scheme. The equation of continuity was modified by introducing an artificial compressibility and digitized by a finite difference scheme.

Calculations were validated with the simulation of laminar flow in a rigid tube. Then, comparisons were made between simulations of a rigid aqueduct and a deformable one. We found that the deformability of the walls has a strong influence on the pressure drop for a given flow.  相似文献   
95.
Despite the advancement of cardiac imaging technologies, these have traditionally been limited to global geometrical measurements. Computational fluid dynamics (CFD) has emerged as a reliable tool that provides flow ?eld information and other variables essential for the assessment of the cardiac function. Extensive studies have shown that vortex formation and propagation during the filling phase acts as a promising indicator for the diagnosis of the cardiac health condition. Proper setting of the boundary conditions is crucial in a CFD study as they are important determinants, that affect the simulation results. In this article, the effect of different transmitral velocity profiles (parabolic and uniform profile) on the vortex formation patterns during diastole was studied in a ventricle with dilated cardiomyopathy (DCM). The resulting vortex evolution pattern using the uniform inlet velocity profile agreed with that reported in the literature, which revealed an increase in thrombus risk in a ventricle with DCM. However the application of a parabolic velocity profile at the inlet yields a deviated vortical flow pattern and overestimates the propagation velocity of the vortex ring towards the apex of the ventricle. This study highlighted that uniform inlet velocity profile should be applied in the study of the filling dynamics in a left ventricle because it produces results closer to that observed experimentally.  相似文献   
96.
Measuring the blood flow is still limited by current imaging technologies and is generally overcome using computational fluid dynamics (CFD) which, because of the complex geometry of blood vessels, has widely relied on tetrahedral meshes. Hexahedral meshes offer more accurate results with lower-density meshes and faster computation as compared to tetrahedral meshes, but their use is limited by the far more complex mesh generation. We present a robust methodology for conformal and structured hexahedral mesh generation – applicable to complex arterial geometries as bifurcating vessels – starting from triangulated surfaces. Cutting planes are used to slice the lumen surface and to construct longitudinal Bezier splines. Afterwards, an isoparametric transformation is used to map a parametrically defined quadrilateral surface mesh into the vessel volume, resulting in stacks of sections which can then be used for sweeping. Being robust and open source based, this methodology may improve the current standard in patient-specific mesh generation and enhance the reliability of CFD to patient-specific haemodynamics.  相似文献   
97.
A numerical pressure loss model previously used for adult human airways has been modified to simulate the inhalation pressure distribution in a healthy 9-month-old infant lung morphology model. Pressure distributions are calculated for air as well as helium and xenon mixtures with oxygen to investigate the effects of gas density and viscosity variations for this age group. The results indicate that there are significant pressure losses in infant extrathoracic airways due to inertial effects leading to much higher pressures to drive nominal flows in the infant airway model than for an adult airway model. For example, the pressure drop through the nasopharynx model of the infant is much greater than that for the nasopharynx model of the adult; that is, for the adult-versus-child the pressure differences are 0.08 cm H2O versus 0.4 cm H2O, 0.16 cm H2O versus 1.9 cm H2O and 0.4 cm H2O versus 7.7 cm H2O, breathing helium–oxygen (78/22%), nitrogen–oxygen (78/22%) and xenon–oxygen (60/40%), respectively. Within the healthy lung, viscous losses are of the same order for the three gas mixtures, so the differences in pressure distribution are relatively small.  相似文献   
98.
Pulmonary oedema is a life-threatening disease that requires special attention in the area of research and clinical diagnosis. Computer-based techniques are rarely used to quantify the intrathoracic fluid volume (IFV) for diagnostic purposes. This paper discusses a software program developed to detect and diagnose pulmonary oedema using LabVIEW. The software runs on anthropometric dimensions and physiological parameters, mainly transthoracic electrical impedance (TEI). This technique is accurate and faster than existing manual techniques. The LabVIEW software was used to compute the parameters required to quantify IFV. An equation relating per cent control and IFV was obtained. The results of predicted TEI and measured TEI were compared with previously reported data to validate the developed program. It was found that the predicted values of TEI obtained from the computer-based technique were much closer to the measured values of TEI. Six new subjects were enrolled to measure and predict transthoracic impedance and hence to quantify IFV. A similar difference was also observed in the measured and predicted values of TEI for the new subjects.  相似文献   
99.
This article reports on the geometric optimisation of a T-shaped biochip microchannel fluidic separator aiming to maximise the separation efficiency of plasma from blood through the improvement of the unbalanced separation performance among different channel bifurcations. For this purpose, an algebraic analysis is firstly implemented to identify the key parameters affecting fluid separation. A numerical optimisation is then carried out to search the key parameters for improved separation performance of the biochip. Three parameters, the interval length between bifurcations, the main channel length from the outlet to the bifurcation region and the side channel geometry, are identified as the key characteristic sizes and defined as optimisation variables. A balanced flow rate ratio between the main and side channels, which is an indication of separation effectiveness, is defined as the objective. It is found that the degradation of the separation performance is caused by the unbalanced channel resistance ratio between the main and side channel routes from bifurcations to outlets. The effects of the three key parameters can be summarised as follows: (a) shortening the interval length between bifurcations moderately reduces the differences in the flow rate ratios; (b) extending the length of the main channel from the main outlet is effective for achieving a uniformity of flow rate ratio but ineffective in changing the velocity difference of the side channels and (c) decreasing the lengths of side channels from upstream to downstream is effective for both obtaining a uniform flow rate ratio and reducing the differences in the flow velocities between the side branch channels. An optimisation process combining the three parameters is suggested as this integration approach leads to fast convergent process and also offers flexible design options for satisfying different requirements.  相似文献   
100.
This paper investigates the effectiveness of using curved constrictions in the bifurcation region of T-type fluid separators for promoting flow development in the intervals between bifurcations. A design of biofluid separator is proposed and a mathematical analysis and a numerical simulation of the blood flow in microchannels are conducted. The design is based on a modification of an existing T-shaped biochip device which consists of a main channel and a series of perpendicularly positioned side channels. By means of bifurcation effect, the blood is separated into plasma concentration flow from the side channels and blood cell concentration flow from the main channel. In this design, curved constrictions are inserted between bifurcations to replace the original straight channel section, so that the constriction and curved channel effects can be induced apart from the existing bifurcation effect. The mathematical analysis is aimed to the flow field and shear stress of the blood fluid in the microchannel geometries employed in the current design, including bifurcation, constriction and curved channel. The numerical simulation and mathematical analysis result in agreed conclusions, giving some insights into the importance of the relevant geometries in promoting biofluid separation. The main results can be summarised as follows: (i) the constrictions can largely increase the shear stress by the ratio of square of the reduction of the sections between the constriction and parent main channel. (ii) The curved channel intervals can induce centrifugal force, smoothly transit the flow field and increase the chances depleting fluid from the cell-free layer. (iii) The thickness of the boundary layer skimmed into the side channels from the main channel is decreased in this design and can be controlled, falling into the cell-free layer region by adjusting the geometry of the side channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号