首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1934篇
  免费   307篇
  国内免费   16篇
  2024年   6篇
  2023年   51篇
  2022年   57篇
  2021年   84篇
  2020年   89篇
  2019年   107篇
  2018年   57篇
  2017年   91篇
  2016年   70篇
  2015年   81篇
  2014年   152篇
  2013年   148篇
  2012年   82篇
  2011年   86篇
  2010年   53篇
  2009年   78篇
  2008年   78篇
  2007年   83篇
  2006年   78篇
  2005年   43篇
  2004年   47篇
  2003年   41篇
  2002年   27篇
  2001年   33篇
  2000年   42篇
  1999年   31篇
  1998年   37篇
  1997年   29篇
  1996年   30篇
  1995年   37篇
  1994年   25篇
  1993年   35篇
  1992年   22篇
  1991年   14篇
  1990年   24篇
  1989年   26篇
  1988年   25篇
  1987年   13篇
  1986年   20篇
  1985年   13篇
  1984年   21篇
  1983年   13篇
  1982年   18篇
  1981年   17篇
  1980年   9篇
  1979年   5篇
  1977年   6篇
  1973年   5篇
  1972年   4篇
  1970年   6篇
排序方式: 共有2257条查询结果,搜索用时 15 毫秒
51.
Abstract: The functional significance of peroxynitrite in the release of [3H]GABA induced by nitric oxide (NO) liberated from NO generators was investigated using cerebral cortical neurons in primary culture. NO generators such as sodium nitroprusside (SNP) and S -nitroso- N -acetylpenicillamine (SNAP) increased [3H]GABA release in a dose-dependent manner. These increases in [3H]GABA release were significantly inhibited by hemoglobin, indicating that those NO generators evoke the release of [3H]GABA by the formation of NO. Two types of superoxide scavengers, Cu2+/Zn2+ superoxide dismutase and ceruloplasmin, significantly reduced the increase in [3H]GABA release induced by both SNP and SNAP, which assumes that NO requires superoxide to induce [3H]GABA release from the neurons. In addition, synthesized peroxynitrite induced a dose-dependent increase in [3H]GABA release from the neurons. These results indicate that NO-induced [3H]GABA release is mediated by peroxynitrite formed by the reaction of NO with superoxide.  相似文献   
52.
Abstract: Excitatory amino acid (EAA) neurotransmitters may play a role in the pathophysiology of traumatic injury to the CNS. Although NMDA receptor antagonists have been reported to have therapeutic efficacy in animal models of brain injury, these compounds may have unacceptable toxicity for clinical use. One alternative approach is to inhibit the release of EAAs following traumatic injury. The present study examined the effects of administration of a novel sodium channel blocker and EAA release inhibitor, BW1003C87, or the NMDA receptor-associated ion channel blocker magnesium chloride on cerebral edema formation following experimental brain injury in the rat. Animals (n = 33) were subjected to fluid percussion brain injury of moderate severity (2.3 atm) over the left parietal cortex. Fifteen minutes after injury, the animals received a constant infusion of BW1003C87 (10 mg/kg, i.v.), magnesium chloride (300 µmol/kg, i.v.), or saline over 15 min (2.75 ml/kg/15 min). In all animals, regional tissue water content in brain was assessed at 48 h after injury, using the wet weight/dry weight technique. In saline-treated control animals, fluid percussion brain injury produced significant regional brain edema in injured left parietal cortex ( p < 0.001), the cortical area adjacent to the site of maximal injury ( p < 0.001), left hippocampus ( p < 0.001), and left thalamus ( p = 0.02) at 48 h after brain injury. Administration of BW1003C87 15 min postinjury significantly reduced focal brain edema in the cortical area adjacent to the site of maximal injury ( p < 0.02) and left hippocampus ( p < 0.01), whereas magnesium chloride attenuated edema in left hippocampus ( p = 0.02). These results suggest that excitatory neurotransmission may play an important role in the pathogenesis of posttraumatic brain edema and that pre- or post-synaptic blockade of glutamate receptor systems may attenuate part of the deleterious sequelae of traumatic brain injury.  相似文献   
53.
54.
We have investigated the distribution of tyrosine-hydroxylase-like immunoreactivity in the cerebral ganglia of the American cockroach, Periplaneta americana. Groups of tyrosine-hydroxylase-immunoreactive cell bodies occur in various parts of the three regions of the cerebral ganglia. In the protocerebrum, single large neurons or small groups of neurons are located in the lateral neuropil, adjacent to the calyces, and in the dorsal portion of the pars intercerebralis. Small scattered cell bodies are found in the outer layers of the optic lobe, and clusters of larger cell bodies can be found in the deutocerebrum, medial and lateral to the antennal glomeruli. Thick bundles of tyrosine-hydroxylase-positive nerve fibers traverse the neuropil in the proto- and deutocerebrum and innervate the glomerular and the nonglomerular neuropil with fine varicose terminals. Dense terminal patterns are present in the medulla and lobula of the optic lobe, the pars intercerebralis, the medial tritocerebrum, and the area surrounding the antennal glomeruli, the central body and the mushroom bodies. The pattern of tyrosine-hydroxylase-like immunoreactivity is similar to that previously described for catecholaminergic neurons, but it is distinctly different from the distribution of histaminergic and serotonergic neurons.  相似文献   
55.
GABAergic neurons in the striatum are very sensitive to the effects of ischemia. The progressive decline in striatal GABA following transient forebrain ischemia in gerbils may be secondary to either a decreased production or an increase in reuptake mechanisms or both. The current experiment was designed to evaluate release of GABA by stimulation with K+ or inhibition of its uptake with nipecotic acid or their combination (K+ nipecotic) after repetitive forebrain ischemia in gerbils by in-vivo microdialysis on Days 1, 3, 5, and 14 following the insult. Infusion of nipecotic acid or potassium chloride, resulted in a significant increase in extracellular GABA. This response was significantly decreased in the post-ischemic animals. The synergistic effect of increased GABA concentrations by the infusion of nipecotic acid+potassium chloride seen in the controls was not evident in the post-ischemic animals. In conclusion, though there is a reduction in the extracellular GABA concentrations in the first week following an ischemic insult, restorative mechanisms are operative in the second week as seen by the increasing GABA concentrations.  相似文献   
56.
Summary Inverted pyramidal neurons are very abundant in the cerebral cortex of the adult reeler mutant mouse. Two types of inverted pyramid are found in rapid Golgi impregnations. In the first type the axon starts from the base of the cell body and bends towards the white matter. In the second type, which is more common, the axon emerges from the apical dendritic tree and descends directly towards the white matter.Despite its abnormal topography, the site of origin of the axon in pyramids of the second type displays a normal differentiation, when analysed with the electron microscopic Golgi technique, suggesting that the ectopic initial axon segment is able to fulfil its normal functions.  相似文献   
57.
Ultrastructure of arterioles in the cat brain   总被引:2,自引:0,他引:2  
Summary A total of 110 arterioles were examined in the brains of cats; different sites were studied including the cortex, putamen, pons and crus cerebri. No internal elastic laminae were seen in the subendothelial space, although occasional fragments of elastic material were present in the larger arterioles. The media was composed of one, two or three layers of smooth muscle cells which interlocked in such a way that the vessel wall thickness was constant. Numerous tight junctions were seen between adjacent smooth muscle cells and between the endothelium and smooth muscle cells. Apart from the usual cell organelles, the smooth muscle cells of arterioles had numerous dense patches on the cell surface. The structure of the adventitia varied according to the diameter of the vessel and the site in the brain; it contained adventitial cells, bundles of collagen fibres and nerve fibres. Innervation of arterioles was more constant in the brain stem than in the cortex. Metarterioles had less specialised, atypical smooth muscle cells, a discontinuous media and numerous, extensive myoendothelial tight junctions; they were not innervated by nerve fibres. The diameter of metarterioles was less than 10 m whereas that of arterioles was 10–45 m. The possible functional aspects of arteriolar innervation are discussed.  相似文献   
58.
Summary Endothelia of the anterior cerebral arteries in rats aged 1 to 3 days were studied. Thin (about 50–90 Å) and thick (about 100–110 Å) filaments are present in the endothelia. Numerous spherical- or rod-shaped bodies, measuring approximately 0.07 to 0.3 m in diameter and up to 0.6 m in length occur in the endothelial cells. These bodies contain a tubular structure. The diameter of the individual tubules is about 200 Å. The present observations suggest that spherical- or rod-shaped inclusions are first synthesized in the rough endoplasmic reticulum and thereafter these materials are transported into the Golgi complex for maturation. A small number of the inclusions, however, may originate directly from the rough endoplasmic reticulum and not pass through the Golgi apparatus.A part of this study was demonstrated at the 70th Versammlung der Anatomischen Gesellschaft in Düsseldorf, April, 1–5, 1975The author thanks Mr. Tatsuro Fukushima for preparation of photographs  相似文献   
59.
Observations on petalial asymmetry for 190 hominoid endocasts are reported, and their statistical differences assessed. While all taxa of hominoids show asymmetries to various degrees, the patterns or combinations of petalial asymmetries are very different, with fossil hominids and modern Homo sapiens showing an identical pattern of left-occipital, right-frontal petalias, which contrasts with those found normally in pongids. Of the pongids, Gorilla shows the greater degree of asymmetry in left-occipital petalias. Only modern Homo and hominids (Australopithecus, Homo erectus, Neandertals) show a distinct left-occipital, right-frontal petalial pattern. Analysis by x2 statistics shows the differences to be highly significant. Due to small sample size and incompleteness of endocasts, small-brained hominids, i.e., Australopithecus, are problematical. To the degree that gross petalial patterns are correlated with cognitive task specialization, we speculate that human cognitive patterns evolved early in hominid evolution and were related to selection pressures operating on both symbolic and spatiovisual integration, and that these faculties are corroborated in the archaeological record.  相似文献   
60.
12-Hydroxyeicosatetraenoic acid (12-HETE) production from arachidonic acid by cerebral microvessels isolated from perfused adult murine brain was reduced by the lipoxygenase inhibitors baicalein, esculetin, gossypol, nordihydroguaiaretic acid, and quercetin. Except for quercetin and gossypol, the IC50 did not exceed 10 microM. Each inhibitor, except baicalein, also decreased microvessel prostaglandin production when present in concentrations above their IC50 value for 12-HETE. In contrast, inhibitors of the cytochrome P450 monooxygenase system, clotrimazole, metyrapone, and proadifen (SKF-525A), had little effect on microvessel 12-HETE production. Chiral phase HPLC analysis revealed that only the (S) enantiomer of 12-HETE was formed. The major microvessel metabolite of eicosapentaenoic acid co-eluted with 12-hydroxyeicosapentaenoic acid (12-HEPE) on reverse-phase HPLC and the (S) enantiomer of 12-HEPE on chiral phase HPLC. Furthermore, like 12-HETE, 12-HEPE production was blocked by lipoxygenase inhibitors. These studies demonstrate that brain microvessels produce only the (S) enantiomeric 12-hydroxy derivatives of both arachidonic acid and eicosapentaenoic acid by the action of a lipoxygenase that can be selectively inhibited by baicalein. Since arachidonic acid and eicosapentaenoic acid are available to cerebral blood vessels in certain pathological settings, these 12-hydroxy acid lipoxygenase products may mediate some of the cerebrovascular dysfunction that occurs following stroke, brain trauma, or seizures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号