首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6161篇
  免费   817篇
  国内免费   150篇
  2024年   20篇
  2023年   139篇
  2022年   119篇
  2021年   315篇
  2020年   315篇
  2019年   422篇
  2018年   269篇
  2017年   236篇
  2016年   214篇
  2015年   258篇
  2014年   410篇
  2013年   499篇
  2012年   260篇
  2011年   313篇
  2010年   203篇
  2009年   259篇
  2008年   247篇
  2007年   244篇
  2006年   238篇
  2005年   171篇
  2004年   194篇
  2003年   175篇
  2002年   137篇
  2001年   120篇
  2000年   114篇
  1999年   129篇
  1998年   117篇
  1997年   91篇
  1996年   91篇
  1995年   89篇
  1994年   76篇
  1993年   70篇
  1992年   75篇
  1991年   48篇
  1990年   56篇
  1989年   68篇
  1988年   57篇
  1987年   35篇
  1986年   29篇
  1985年   39篇
  1984年   33篇
  1983年   24篇
  1982年   19篇
  1981年   29篇
  1980年   15篇
  1979年   9篇
  1978年   6篇
  1977年   7篇
  1973年   6篇
  1970年   7篇
排序方式: 共有7128条查询结果,搜索用时 468 毫秒
101.
Abstract: Heparin, a highly sulfated glycosaminoglycan, is known to be obligatory for long-term endothelial cell cultures; it potentiates the mitogenic activities of endothelial cell growth factors and prolongs the replicative life span of the cells. Here we have shown that besides its growth factor-supportive role, heparin exerts a specific action on cerebral capillary endothelial cells (cECs), unrelated to serum or growth factors, by increasing activity of ornithine decarboxylase (ODC; EC 4.1.1.17) in these cells. For our experiments we have used two different types of cloned cECs: type I cECs, grown in the presence of endothelial cell growth factor and heparin, and type II cECs, usually cultivated without growth factors. Heparin action on ODC activity was shown to be dose dependent within the range of 1–100 μg/ml. Increasing concentrations of or depletion of endothelial cell growth factor from type I cultures had no effect on ODC activity. The increase in enzyme activity was highest after 30 min to 1 h of heparin treatment. As evidenced by northern analysis, the heparin-mediated enhancement of ODC activity was not accompanied by changes of ODC mRNA levels. Studies of DNA replication revealed that in the absence of heparin-binding growth factors, heparin did not affect the proliferative activity of cloned cECs.  相似文献   
102.
Abstract: Calcium/calmodulin-stimulated protein kinase II (CaMPK II). a major kinase in brain, has been established to play an important role in neurotransmitter release and organization of postsynaptic receptors, and it is known to be involved in long-term potentiation and memory. Less is known about the function of this enzyme in nonneural cells. Here we report on the production, presence, and phosphorylation of the α-subunit of CaM-PK II in primary cultures of cerebral endothelial cells. These results raise the possibility that α-CaM-PK II can act as one of the key enzymes of calcium-mediated intracellular signaling in the cerebral endothelial cells and suggest that α-CaM-PK II may participate in such basic cellular processes as permeability in physiological and pathological conditions.  相似文献   
103.
Abstract: The effect of Ginkgo biloba extract (EGb 761) treatment (100 mg/kg/day, per os, for 14 days) on electroconvulsive shock (ECS)-induced accumulation of free fatty acids (FFA) and diacylglycerols (DAG) was analyzed in rat cerebral cortex and hippocampus. EGb 761 reduced the FFA pool size by 33% and increased the DAG pool by 36% in the hippocampus. These endogenous lipids were unaffected in cerebral cortex. During the tonic seizure (10 s after ECS) the fast accumulation of FFA, mainly 20:4, was similar in sham- and EGb 761 -treated rats, in both the cerebral cortex and hippocampus. However, further accumulation of free 18:0 and 20:4, observed in the hippocampus of sham-treated rats during clonic seizures (30 s to 2 min after ECS), did not occur in EGb 761-treated animals. The rise in DAG content triggered in the cortex and hippocampus by ECS was delayed by EGb 761 treatment from 10 s to 1 min, when values similar to those in sham animals were attained. Moreover, in the hippocampus the size of the total DAG pool was decreased by 19% during the tonic seizure. At later times, DAG content showed a faster decrease in EGb 761-treated rats. By 2 min levels of all DAG acyl groups decreased to values significantly lower than in sham animals in both cortex and hippocampus. This study shows that EGb 761 treatment affects, with high selectivity, lipid metabolism and lipid-derived second messenger release and removal in the hippocampus, while affecting to a lesser extent the cerebral cortex.  相似文献   
104.
Abstract: Changes in the extracellular levels of excitatory and inhibitory amino acid transmitters were studied in the rat striatum during penumbral ischaemia using intracerebral microdialysis. Effects of penumbral forebrain ischaemia were compared with those of ischaemia with sustained anoxic depolarisation and K+ (100 m M ). Comparisons were also made between different groups of animals at 2 and 24 h after dialysis probe implantation. The K+ stimulus did not provoke any release of excitatory amino acids in the 24-h group, probably reflecting a decrease of functional synapses adjacent to the probe. During 30 min of penumbral ischaemia, excitatory amino acids did not reach critical concentrations in the extracellular fluid, and increases in levels of inhibitory/modulatory amino acids were similar. On the other hand, severe transient ischaemia resulted in massive synchronous release of many neuroactive excitatory and inhibitory compounds, in both the 2- and 24-h groups. These and other data suggest that changes during severe ischaemia may arise from both neurotransmitter and metabolic pools. It is concluded that is- chaemic damage in the penumbra may not be related to extracellular neuroactive amino acid changes generated within this region.  相似文献   
105.
Using31P-,23Na- and39K-NMR, we assessed ischemic changes in high energy phosphates and ion contents of isolated perfused rat hearts continuously and systematically. To discriminate intra- and extracellular Na+, a shift reagent (Dy(TTHA)3–) was used in23Na-NMR study. In39K-NMR study, the extracellular K+ signal was suppressed by inversion recovery pulse sequence in order to obtain intracellular K+ signal without using shift reagnets. During the early period of ischemia, increases in intracellular Na+ and inorganic phosphate (Pi) were observed in addition to the well-documented decreases in creatine phosphate and ATP and a fall of intracellular pH, suggesting an augmented operation of Na+–H+ exchange triggered by a fall of the intracellular pH resulted from breakdown of ATP. At around 15 min of ischemia, a second larger increase in intracellular Na+ and a decrease in intracellular K+ were observed in association with a second increase in Pi. This was accompnanied by an abrupt rise of the ventricular end-diastolic pressure. As there was a depletion of ATP at this time, the increase in intracellular Na+ and associated decrease in intracellular K+ may be explained by inhibition of the Na+–K+ ATPase due to the depletion of ATP. A longer observation with31P-NMR revealed a second phosphate peak (at lower magnetic field to ordinary Pi peak) which increased its intensity as ischemic time lengthened. The pH of this 2nd peak changed in parallel with the changes in pH of the bathing solution, indicating the appearance of a compartment whose hydrogen concentration is in equilibrium with that of the external compartment. Thus, the peak could be used as an index of irreversible membrane damage of the myocardium.  相似文献   
106.
We have examined the nonparallel changes in tampanic membrane temperatures (T ty) from the two ears in response to various changes in body and head positions. Upon assuming a lateral recumbent position, the T ty on the lower side increased while that on the upper side decreased. Pressure application over a wide area of the lateral chest only caused inconsistent and obscure asymmetric changes in T ty. A lateral flexion of the head with the subject sitting upright and a rotation of the head to the side in a supine position induced an increase in the T ty on the lower side compared to that on the upper side. The temperature and blood flow of the forehead often decreased on the lower side and increased on the upper side, although such responses were not always concomitant with the asymmetric changes in T ty. A dorsal flexion of the head with the subject in a reclining position caused a slight increase in the T ty, whereas raising the head upright induced a slight decrease in them. Two additional experiments were carried out with single photon emission computed tomography using 99mTc-hexamethylpropyleneamine oxime as tracer, and a slight, relative decrease in counts was noted in the right hemisphere during rotation of the head to the right. These results would strongly suggest that unilateral increases and decreases in T ty could have been caused by one-sided decreases and increases, respectively, in blood flow to the brain and/or the tympanic membrane, induced by a vasomotor reflex involving vestibular stimulation.  相似文献   
107.
棉花耐害补偿临界指标及其应用的探讨   总被引:2,自引:0,他引:2  
棉花耐害补偿反应可归纳为三种动态类型:1)不足补偿动态反应型;2)完全——不足补偿动态反应型;3)超越——完全——不足补偿动态反应型。其临界指标的建立及其应用可优化棉花病虫害综防决策.以研究害虫防治决策为例,剖析了利用害虫自然种群,人为改变害虫自然种群、人为地接放一定虫量与人工损害模拟等不同测定棉花耐害补偿能力方法的利弊。并探讨改进措施.分析论述了不同量化棉花耐害补偿能力的方法,并就棉花耐害补偿临界指标的建立及其意义作了探讨.棉花耐害补偿临界描标在棉田生态系统有害生物综合治理中可用于指导防治决策或直接用于防治决策,有着十分广阔的应用前景.最后就棉花耐害补偿临界指标及其应用的研究方向及有关问题作了讨论。  相似文献   
108.
Drug-induced liver injury (DILI) is an adverse outcome of the currently used tuberculosis treatment regimen, which results in patient noncompliance, poor treatment outcomes, and the emergence of drug-resistant tuberculosis. DILI is primarily caused by the toxicity of the drugs and their metabolites, which affect liver cells, biliary epithelial cells, and liver vasculature. However, the precise mechanism behind the cellular damage attributable to first-line antitubercular drugs (ATDs), as well as the effect of toxicity on the cell survival strategies, is yet to be elucidated. In the current study, HepG2 cells upon treatment with a high concentration of ATDs showed increased perforation within the cell, cuboidal shape, and membrane blebbing as compared with control/untreated cells. It was observed that ATD-induced toxicity in HepG2 cells leads to altered mitochondrial membrane permeability, which was depicted by the decreased fluorescence intensity of the MitoRed tracker dye at higher drug concentrations. In addition, high doses of ATDs caused cell damage through an increase in reactive oxygen species production in HepG2 cells and a simultaneous reduction in glutathione levels. Further, high dose of isoniazid (50–200 mM), pyrazinamide (50–200 mM), and rifampicin (20–100 µM) causes cell apoptosis and affects cell survival during toxic conditions by decreasing the expression of potent autophagy markers Atg5, Atg7, and LC3B. Thus, ATD-mediated toxicity contributes to the reduced ability of hepatocytes to tolerate cellular damage caused by altered mitochondrial membrane permeability, increased apoptosis, and decreased autophagy. These findings further emphasize the need to develop adjuvant therapies that can mitigate ATD-induced toxicity for the effective treatment of tuberculosis.  相似文献   
109.
A technique was developed for sectioning fresh red spruce foliage (Picea rubens Sarg.) for use in fluorescence microscopy. This allowed rapid examination of mesophyll in 3-5 mm needle sections. Healthy, ozone treated and cold stressed needles were examined to assess the utility of this technique for early detection of damage. Healthy mesophyll cells fluoresced bright red, while injured cells fluoresced yellow-green in ozone treated needles, and yellow-orange in frozen needles. Shifts in fluorescence wavelengths may be useful for early detection of injury to mesophyll before it is evident by standard light or electron microscopy.  相似文献   
110.
-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent -(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号