首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1289篇
  免费   215篇
  国内免费   7篇
  2023年   25篇
  2022年   29篇
  2021年   46篇
  2020年   41篇
  2019年   56篇
  2018年   30篇
  2017年   60篇
  2016年   49篇
  2015年   52篇
  2014年   97篇
  2013年   85篇
  2012年   51篇
  2011年   54篇
  2010年   24篇
  2009年   53篇
  2008年   53篇
  2007年   54篇
  2006年   54篇
  2005年   24篇
  2004年   34篇
  2003年   27篇
  2002年   17篇
  2001年   18篇
  2000年   30篇
  1999年   28篇
  1998年   23篇
  1997年   22篇
  1996年   25篇
  1995年   31篇
  1994年   23篇
  1993年   34篇
  1992年   23篇
  1991年   13篇
  1990年   21篇
  1989年   24篇
  1988年   24篇
  1987年   16篇
  1986年   20篇
  1985年   10篇
  1984年   20篇
  1983年   12篇
  1982年   17篇
  1981年   17篇
  1980年   9篇
  1979年   5篇
  1978年   3篇
  1977年   6篇
  1973年   5篇
  1972年   4篇
  1970年   6篇
排序方式: 共有1511条查询结果,搜索用时 15 毫秒
51.
Summary Endothelia of the anterior cerebral arteries in rats aged 1 to 3 days were studied. Thin (about 50–90 Å) and thick (about 100–110 Å) filaments are present in the endothelia. Numerous spherical- or rod-shaped bodies, measuring approximately 0.07 to 0.3 m in diameter and up to 0.6 m in length occur in the endothelial cells. These bodies contain a tubular structure. The diameter of the individual tubules is about 200 Å. The present observations suggest that spherical- or rod-shaped inclusions are first synthesized in the rough endoplasmic reticulum and thereafter these materials are transported into the Golgi complex for maturation. A small number of the inclusions, however, may originate directly from the rough endoplasmic reticulum and not pass through the Golgi apparatus.A part of this study was demonstrated at the 70th Versammlung der Anatomischen Gesellschaft in Düsseldorf, April, 1–5, 1975The author thanks Mr. Tatsuro Fukushima for preparation of photographs  相似文献   
52.
Observations on petalial asymmetry for 190 hominoid endocasts are reported, and their statistical differences assessed. While all taxa of hominoids show asymmetries to various degrees, the patterns or combinations of petalial asymmetries are very different, with fossil hominids and modern Homo sapiens showing an identical pattern of left-occipital, right-frontal petalias, which contrasts with those found normally in pongids. Of the pongids, Gorilla shows the greater degree of asymmetry in left-occipital petalias. Only modern Homo and hominids (Australopithecus, Homo erectus, Neandertals) show a distinct left-occipital, right-frontal petalial pattern. Analysis by x2 statistics shows the differences to be highly significant. Due to small sample size and incompleteness of endocasts, small-brained hominids, i.e., Australopithecus, are problematical. To the degree that gross petalial patterns are correlated with cognitive task specialization, we speculate that human cognitive patterns evolved early in hominid evolution and were related to selection pressures operating on both symbolic and spatiovisual integration, and that these faculties are corroborated in the archaeological record.  相似文献   
53.
12-Hydroxyeicosatetraenoic acid (12-HETE) production from arachidonic acid by cerebral microvessels isolated from perfused adult murine brain was reduced by the lipoxygenase inhibitors baicalein, esculetin, gossypol, nordihydroguaiaretic acid, and quercetin. Except for quercetin and gossypol, the IC50 did not exceed 10 microM. Each inhibitor, except baicalein, also decreased microvessel prostaglandin production when present in concentrations above their IC50 value for 12-HETE. In contrast, inhibitors of the cytochrome P450 monooxygenase system, clotrimazole, metyrapone, and proadifen (SKF-525A), had little effect on microvessel 12-HETE production. Chiral phase HPLC analysis revealed that only the (S) enantiomer of 12-HETE was formed. The major microvessel metabolite of eicosapentaenoic acid co-eluted with 12-hydroxyeicosapentaenoic acid (12-HEPE) on reverse-phase HPLC and the (S) enantiomer of 12-HEPE on chiral phase HPLC. Furthermore, like 12-HETE, 12-HEPE production was blocked by lipoxygenase inhibitors. These studies demonstrate that brain microvessels produce only the (S) enantiomeric 12-hydroxy derivatives of both arachidonic acid and eicosapentaenoic acid by the action of a lipoxygenase that can be selectively inhibited by baicalein. Since arachidonic acid and eicosapentaenoic acid are available to cerebral blood vessels in certain pathological settings, these 12-hydroxy acid lipoxygenase products may mediate some of the cerebrovascular dysfunction that occurs following stroke, brain trauma, or seizures.  相似文献   
54.
Hyperammonemia has been suggested to induce enhanced cerebral cortex ammonia uptake, subsequent glutamine synthesis and accumulation, and finally net glutamine release into the blood stream, but this has never been confirmed in liver insufficiency models. Therefore, cerebral cortex ammonia- and glutamine-related metabolism was studied during liver insufficiency-induced hyperammonemia by measuring plasma flow and venous-arterial concentration differences of ammonia and amino acids across the cerebral cortex (enabling estimation of net metabolite exchange), 1 day after portacaval shunting and 2, 4, and 6 h after hepatic artery ligation (or in controls). The intra-organ effects were investigated by measuring cerebral cortex tissue ammonia and amino acids 6 h after liver ischemia induction or in controls. Arterial ammonia and glutamine increased in portacaval-shunted rats versus controls, and further increased during liver ischemia. Cerebral cortex net ammonia uptake, observed in portacaval-shunted rats, increased progressively during liver ischemia, but net glutamine release was only observed after 6 h of liver ischemia. Cerebral cortex tissue glutamine, gamma-aminobutyric acid, most other amino acids, and ammonia levels were increased during liver ischemia. Glutamate was equally decreased in portacaval-shunted and liver-ischemia rats. The observed net cerebral cortex ammonia uptake, cerebral cortex tissue ammonia and glutamine accumulation, and finally glutamine release into the blood suggest that the rat cerebral cortex initially contributes to net ammonia removal from the blood during liver insufficiency-induced hyperammonemia by augmenting tissue glutamine and ammonia pools, and later by net glutamine release into the blood. The changes in cerebral cortex glutamate and gamma-aminobutyric acid could be related to altered ammonia metabolism.  相似文献   
55.
Glibenclamide closes an ATP-sensitive K+ channel (K-ATP channel) by interaction with the sulfonylurea receptor in the plasma membrane of pancreatic B cells and thereby initiates insulin release. Previous studies demonstrated that the Mg2+ complex of ATP decreases glibenclamide binding to the sulfonylurea receptor from pancreatic islets. The aim of the present study was to examine the effect of adenine and guanine nucleotides on binding of sulfonyl-ureas to the cerebral sulfonylurea receptor. For this purpose, binding properties of the particulate and solubilized site from rat or pig cerebral cortex were analyzed. Maximum recovery of receptors in detergent extracts amounted to 40-50%. Specific binding of [3H]glibenclamide to the solubilized receptors corresponded well to specific binding to microsomes. In microsomes and detergent extracts, the Mg2+ complexes of ATP, ADP, GTP, and GDP inhibited binding of [3H]glibenclamide. These effects were not observed in the absence of Mg2+. In detergent extracts, Mg-ATP (300 microM) reduced the number of high-affinity sites for [3H]-glibenclamide by 52% and increased the dissociation constant for [3H]glibenclamide by eightfold; Mg-ATP was half-maximally effective at 41 microM. Alkaline phosphatase accelerated the reversal of Mg-ATP-induced inhibition of [3H]glibenclamide binding. The data suggest similar control of the sulfonylurea receptor from brain and pancreatic islets by protein phosphorylation.  相似文献   
56.
Gamma-aminobutyric acidA/benzodiazepine receptor binding sites and the N-methyl-D-aspartate subclass of glutamate receptor sites were assessed in synaptic plasma membrane homogenates of cerebral cortex tissue obtained at autopsy from cirrhotic and noncirrhotic alcoholic patients and matched control subjects. The alcoholic patients consumed an average of greater than 80 g of ethanol/day, the control subjects less than 20 g/day. Postmortem delays up to approximately 100 h caused no significant loss of any of the binding sites; the patient and subject groups were closely matched for age. The affinities (KD) of the receptor sites did not differ between the patient and subject groups, nor between cortical regions. Using three different radioligands ([3H]muscimol, [3H]flunitrazepam, and [3H]diazepam), the gamma-aminobutyric acidA/benzodiazepine receptor complex was found to have greater density (Bmax) in superior frontal gyrus in alcoholic patients (which selectively shows morphological change in alcoholic patients), but was unchanged in motor cortex. Alcoholic patients with cirrhosis had much less pronounced changes. The density of the N-methyl-D-aspartate subclass of glutamate receptors, assessed with [3H]MK-801, did not vary across patient and subject groups.  相似文献   
57.
The activity of the pentose phosphate shunt pathway in brain is thought to be linked to neurotransmitter metabolism, glutathione reduction, and synthetic pathways requiring NADPH. There is currently no method available to assess flux of glucose through the pentose phosphate pathway in localized regions of the brain of conscious animals in vivo. Because metabolites of deoxy[1-14C]glucose are lost from brain when the experimental period of the deoxy[14C]glucose method exceeds 45 min, the possibility was considered that the loss reflected activity of this shunt pathway and that this hexose might be used to assay regional pentose phosphate shunt pathway activity in brain. Decarboxylation of deoxy[1-14C]glucose by brain extracts was detected in vitro, and small quantities of 14C were recovered in the 6-phosphodeoxygluconate fraction when deoxy[14C]glucose metabolites were isolated from freeze-blown brains and separated by HPLC. Local rates of glucose utilization determined with deoxy[1-14C]glucose and deoxy[6-14C]glucose were, however, similar in 20 brain structures at 45, 60, 90, and 120 min after the pulse, indicating that the rate of loss of 14CO2 from deoxy[1-14C]glucose-6-phosphate in normal adult rat brain is too low to permit assay pentose phosphate shunt activity in vivo. Further metabolism of deoxy[1-14]glucose-6-phosphate via this pathway does not interfere during routine use of the deoxyglucose method or explain the progressive decrease in calculated metabolic rate when the experimental period exceeds 45 min.  相似文献   
58.
The uptake of morphine was significantly reduced in most regions of the brains of conscious, unrestrained rats within 10 minutes after treatment with an analog of ACTH/MSH (4–9), ORG-2766. The effect was most obvious in regions with significant densities of enkephalin receptors, namely basal ganglia, hippocampus and cortex. The results explain, in part, how some fragments and analogs of ACTH/MSH may antagonize behavioral actions of morphine, even though some of these peptides lack significant opiate receptor binding properties. We believe that this effect of ORG-2766 is related to an action on the permeability characteristics of the brain microvasculature. The underlying mechanism is unknown.  相似文献   
59.
Summary Polypeptide-hormone producing cells were localized in the alimentary tract and cerebral ganglion ofCiona intestinalis using cytochemical, immunocytochemical and electron-microscopical methods.Antisera to the following peptides of vertebrate type were employed: bombesin, human prolactin (hPRL), bovine pancreatic polypeptide (PP), porcine secretin, motilin, vasoactive intestinal polypeptide (VIP),-endorphin, leu-enkephalin, met-enkephalin, neurotensin, 5-hydroxytryptamin (5-HT), cholecystokinin (CCK), human growth hormone (GH), ACTH, corticotropin-like intermediate lobe peptide (CLIP) and gastric inhibitory peptide (GIP).Immunoreactive cells were found both in the alimentary tract epithelium and in the cerebral ganglion for bombesin, PP, substance P, somatostatin, secretin and neurotensin. Additionally, in the cerebral ganglion only, there were cells immunoreactive for-endorphin, VIP, motilin and human prolactin. 5-HT positive cells, however, were restricted to the alimentary tract.No immunoreactivity was obtained either in the cerebral ganglion or in the alimentary tract with antibodies to leu-enkephalin, met-enkephalin, CCK, growth hormone, ACTH, CLIP and GIP. Prolactin-immunoreactive and pancreatic polypeptide-immunoreactive cells were argyrophilic with the Grimelius' stain and were found in neighbouring positions in the cerebral ganglion.At the ultrastructural level five differently granulated cell types were distinguished in the cerebral ganglion. Granules were present in the perikarya as well as in axons. The possible functions of the peptides as neurohormones, neuroregulators and neuromodulators are discussed.  相似文献   
60.
Abstract Cationic amphiphilic drugs (CADs) of varied clinical use were screened to determine their capacity to alter the pattern of labeling with 32Pj of cerebral cortex mince phospholipids. The altered phospholipid labeling patterns were qualitatively similar, the prominent features being reduced incorporation into phosphatidylcholine and increased incorporation into phosphatidic acid. Relative potencies were: (±)-propranolol > chlorpromazine = 4,4'-bis(diethylaminoethoxy) α,β -diethyldiphenylethane > desipramine > di-bucaine > pimozide > oxymetazoline = fenfluramine = haloperidol = chloroquine > amphetamine = no drug added. Propranolol was used to study the action of CADs further. Its effect was time- and dose-dependent, but in contrast with pineal gland, no label appeared in phosphatidyl-CMP (CDP-diacylglycerol), nor did dialysis of the mince to reduce diffusible substrates or exogenous addition of substrates cause appearance of liponucleotide. Thus lack of diffusible precursors is not responsible for CAD effects in vitro. Pulse-chase experiments with 32P1 and [2-3H]glycerol suggested that inhibition of phosphatidate phosphohydrolase may be partly responsible for the observed alterations in phospholipid labeling in the presence of CADs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号