首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18497篇
  免费   563篇
  国内免费   440篇
  2023年   164篇
  2022年   128篇
  2021年   246篇
  2020年   278篇
  2019年   322篇
  2018年   311篇
  2017年   251篇
  2016年   293篇
  2015年   475篇
  2014年   1331篇
  2013年   1226篇
  2012年   1139篇
  2011年   1466篇
  2010年   1170篇
  2009年   803篇
  2008年   839篇
  2007年   869篇
  2006年   793篇
  2005年   656篇
  2004年   690篇
  2003年   525篇
  2002年   364篇
  2001年   274篇
  2000年   245篇
  1999年   352篇
  1998年   304篇
  1997年   266篇
  1996年   260篇
  1995年   268篇
  1994年   285篇
  1993年   211篇
  1992年   255篇
  1991年   218篇
  1990年   182篇
  1989年   190篇
  1988年   180篇
  1987年   166篇
  1986年   137篇
  1985年   157篇
  1984年   174篇
  1983年   105篇
  1982年   168篇
  1981年   123篇
  1980年   143篇
  1979年   128篇
  1978年   89篇
  1977年   92篇
  1976年   60篇
  1972年   25篇
  1971年   22篇
排序方式: 共有10000条查询结果,搜索用时 38 毫秒
31.
A continuous-flow NMR culture system for mammalian cells has been developed on which 31P-NMR experiments under complete and strictly physiologic conditions have been performed. Observations on the response of the cellular metabolism to stresses such as starvation, low temperature and changes in environmental pH monitored by 31P-NMR are reported. The response of the intracellular pH relative to the external pH of the growth medium is studied. We find that under the experimental conditions used there exists a ΔpH varying between less than 0.2 and more than 0.6 pH units. These results are compatible with those obtained using other techniques.  相似文献   
32.
The imaginal pore plates of Hymenoptera apocrita so far examined embody five or six envelope cells respectively. In early developmental stages, however, supernumerary envelope cells have been found. The results are discussed in the context of cell death as a developmental phenomenon.  相似文献   
33.
Fermentation systems are used to provide an optimal growth environment for many different types of cell cultures. The ability afforded by fermentors to carefully control temperature, pH, and dissolved oxygen concentrations in particular makes them essential to efficient large scale growth and expression of fermentation products. This video will briefly describe the advantages of the fermentor over the shake flask. It will also identify key components of a typical benchtop fermentation system and give basic instruction on setup of the vessel and calibration of its probes. The viewer will be familiarized with the sterilization process and shown how to inoculate the growth medium in the vessel with culture. Basic concepts of operation, sampling, and harvesting will also be demonstrated. Simple data analysis and system cleanup will also be discussed.  相似文献   
34.
35.
Oxidative stress is important for the initiation and progression of cancers, which confers the cells with a survival advantage by inducing oxidative adaption and drug resistance. Therefore, developing strategies to promote oxidative stress-induced cytotoxicity could be important for cancer therapy. Herein, we found that H2O2-mediated oxidative stress increases TRPV2 expression in human hepatoma (HepG2 and Huh-7) cells. This occurred at the mRNA and protein levels in a dose-dependent manner. The significance of TRPV2 in promoting H2O2-induced cell death was demonstrated in gain and loss of function studies with overexpression and knockdown of TRPV2, respectively. Mechanistically, H2O2-induced cell death involves inhibition of pro-survival signaling proteins (Akt, Nrf2) and activation of pro-death signaling proteins (p38, JNK1). Overexpression of TRPV2 in H2O2-treated hepatoma cells aggravates the inhibition of Akt and Nrf2, while it enhances the activation of p38 and JNK1 at the early stage of cell death. Interestingly, increased expression of TRPV2 in HepG2 cells improved the efficacy of stress-associated chemicals to induce cell death. Our findings suggest that TRPV2 acts as an important enhancer for H2O2-induced cytotoxicity. This process occurred by the inhibition of Akt and Nrf2 as well as the early activation of p38 and JNK1. These findings have important implications for inhibition of oxidative adaption and drug resistance.  相似文献   
36.
《Journal of morphology》2017,278(1):4-28
The laterosensory system is a mechanosensory modality involved in many aspects of fish biology and behavior. Laterosensory perception may be crucial for individual survival, especially in habitats where other sensory modalities are generally useless, such as the permanently aphotic subterranean environment. In the present study, we describe the laterosensory canal system of epigean and subterranean species of the genus Ituglanis (Siluriformes: Trichomycteridae). With seven independent colonizations of the subterranean environment in a limited geographical range coupled with a high diversity of epigean forms, the genus is an excellent model for the study of morphological specialization to hypogean life. The comparison between epigean and subterranean species reveals a trend toward reduction of the laterosensory canal system in the subterranean species, coupled with higher intraspecific variability and asymmetry. This trend is mirrored in other subterranean fishes and in species living in different confined spaces, like the interstitial environment. Therefore, we propose that the reduction of the laterosensory canal system should be regarded as a troglomorphic (= cave‐related) character for subterranean fishes. We also comment about the patterns of the laterosensory canal system in trichomycterids and use the diversity of this system among species of Ituglanis to infer phylogenetic relationships within the genus. J. Morphol. 278:4–28, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   
37.
Summary C-band number, guard cell length, and chloroplast number per guard cell were determined for eight maize populations. These populations consisted of maize selected for cold tolerance at the University of Nebraska as well as the original unselected populations. The genome size of these populations had previously been determined. C-band number fluctuated concertedly with the changes in genome size indicating that deletions and additions of constitutive heterochromatin occurred during selection, resulting in altered genome sizes. Guard cell size of all the cold tolerant populations was greater than the cell size of the respective nonselected populations. Chloroplast number per guard cell was also higher in all the cold tolerant populations than in their parental populations, but the increases were not statistically significant. The results indicate that changes in genome size that occurred during selection for cold tolerance are the result of changes in amounts of C-band heterochromatin and that the selection process results in an increase in cell size in the cold tolerant populations.  相似文献   
38.
Potentials were recorded from the epidermal head lines and from the CNS of young cuttlefish, Sepia officinalis, in response to weak water movements. 1. Within the test range 0.5-400 Hz a sinusoidal water movement elicits up to 4 components of response if the electrode is placed on a headline: (i) a positive phasic ON response; (ii) a tonic frequency-following microphonic response; (iii) a slow negative OFF response; and (iv) compound nerve impulses. 2. The amplitude of both the ON wave and the microphonic potential depends on stimulus frequency, stimulus amplitude and stimulus rise time. Frequencies around 100 Hz and short rise times are most effective in eliciting strong potentials. The minimal threshold was 0.06 microns peak-to-peak water displacement at 100 Hz (18.8 microns/s as velocity). 3. Change of direction of tangential sphere movement (parallel vs. across the head lines) has only a small effect on the microphonic and the summed nerve potentials. 4. Frequency and/or amplitude modulations of a carrier stimulus elicit responses at the onset and offset of the modulation and marked changes in the tonic microphonic response. 5. Evoked potentials can be recorded from the brain while stimulating the epidermal lines with weak water movements. The brain potentials differ in several aspects from the potentials of the head lines and show little or no onset or offset wave at the transitions of a frequency and amplitude modulation.  相似文献   
39.
The EphA2 receptor tyrosine kinase plays a central role in the regulation of cell adhesion and guidance in many human tissues. The activation of EphA2 occurs after proper dimerization/oligomerization in the plasma membrane, which occurs with the participation of extracellular and cytoplasmic domains. Our study revealed that the isolated transmembrane domain (TMD) of EphA2 embedded into the lipid bicelle dimerized via the heptad repeat motif L535X3G539X2A542X3V546X2L549 rather than through the alternative glycine zipper motif A536X3G540X3G544 (typical for TMD dimerization in many proteins). To evaluate the significance of TMD interactions for full-length EphA2, we substituted key residues in the heptad repeat motif (HR variant: G539I, A542I, G553I) or in the glycine zipper motif (GZ variant: G540I, G544I) and expressed YFP-tagged EphA2 (WT, HR, and GZ variants) in HEK293T cells. Confocal microscopy revealed a similar distribution of all EphA2-YFP variants in cells. The expression of EphA2-YFP variants and their kinase activity (phosphorylation of Tyr588 and/or Tyr594) and ephrin-A3 binding were analyzed with flow cytometry on a single cell basis. Activation of any EphA2 variant is found to occur even without ephrin stimulation when the EphA2 content in cells is sufficiently high. Ephrin-A3 binding is not affected in mutant variants. Mutations in the TMD have a significant effect on EphA2 activity. Both ligand-dependent and ligand-independent activities are enhanced for the HR variant and reduced for the GZ variant compared with the WT. These findings allow us to suggest TMD dimerization switching between the heptad repeat and glycine zipper motifs, corresponding to inactive and active receptor states, respectively, as a mechanism underlying EphA2 signal transduction.  相似文献   
40.
Human pluripotent stem cells (PSCs) are presumed to have robust DNA repair pathways to ensure genome stability. PSCs likely need to protect against mutations that would otherwise be propagated throughout all tissues of the developing embryo. How these cells respond to genotoxic stress has only recently begun to be investigated. Although PSCs appear to respond to certain forms of damage more efficiently than somatic cells, some DNA damage response pathways such as the replication stress response may be lacking. Not all DNA repair pathways, including the DNA mismatch repair (MMR) pathway, have been well characterized in PSCs to date. MMR maintains genomic stability by repairing DNA polymerase errors. MMR is also involved in the induction of cell cycle arrest and apoptosis in response to certain exogenous DNA-damaging agents. Here, we examined MMR function in PSCs. We have demonstrated that PSCs contain a robust MMR pathway and are highly sensitive to DNA alkylation damage in an MMR-dependent manner. Interestingly, the nature of this alkylation response differs from that previously reported in somatic cell types. In somatic cells, a permanent G2/M cell cycle arrest is induced in the second cell cycle after DNA damage. The PSCs, however, directly undergo apoptosis in the first cell cycle. This response reveals that PSCs rely on apoptotic cell death as an important defense to avoid mutation accumulation. Our results also suggest an alternative molecular mechanism by which the MMR pathway can induce a response to DNA damage that may have implications for tumorigenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号