首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   1篇
  国内免费   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   12篇
  2013年   9篇
  2012年   9篇
  2011年   8篇
  2010年   5篇
  2009年   9篇
  2008年   7篇
  2007年   11篇
  2006年   10篇
  2005年   11篇
  2004年   8篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1984年   11篇
  1983年   13篇
  1982年   6篇
  1981年   16篇
  1980年   11篇
  1979年   7篇
  1978年   2篇
排序方式: 共有248条查询结果,搜索用时 453 毫秒
91.
We investigated the effect of external cations on the permeability characteristics and gating kinetics of the human ether-à-go-go-related gene (HERG) current using the whole-cell patch-clamp technique. Inward HERG currents were recorded on hyperpolarization in 140 mM external Cs+ and Rb+, as well as K+. The permeability ratios of Rb+ and Cs+ relative to K+ were 1.25 and 0.56, respectively. Biphasic outward currents were recorded on depolarization in 140 mM Cs+ and in Rb+ with much smaller amplitude. The voltage dependence of inactivation was affected by external cations, such that the half-inactivation voltage shifted from –69.4±3.7 mV in K+ to –30.7±1.6 mV in Cs+ and to –35.8±1.9 mV in Rb+ (n=5). The time constants of inactivation were also changed significantly by external cations; of inactivation at +40 mV was 16.4±2.2 ms in 140 mM K+, 181±20.3 ms in Cs+, and 94.1±7.6 ms in Rb+ (n=5). Voltage dependence of activation was not altered significantly. The inhibition of the rapid inactivation mechanism by large cations may suggest that the foot-in-the-door model of gating is involved in HERG channel inactivation.  相似文献   
92.
Many biological systems use ethylene glycol bis (beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) to regulate the free calcium concentration ([Ca(2+)](free)) in the presence of physiological levels of free Mg(2+) ([Mg(2+)](free)). Frequently, it is necessary to work at [Ca(2+)](free) beyond EGTA's buffering capabilities. Therefore, we have developed methods to extend the buffering range by adding nitrilotriacetic acid (NTA) to solutions containing EGTA. This extension results from NTA having a lower K'(dCa) than EGTA. Such equilibria are solved by pCa Calculator, a computer program designed to aid in the study of Ca(2+)-dependent physiological processes while accounting for the effects of pH, temperature, and ionic strength. With multiple chelators and pH buffers from which to choose, pCa Calculator calculates the total concentration of each species required to achieve specified free concentrations of Ca(2+), ATP, and Mg(2+). The program is intuitive, user-friendly, and flexible enough to fix or vary the [Mg-ATP(2-)] and ionic strength. Moreover, it can account for increases in experimental volume from calcium addition. A comparative analysis is reported for testing solutions in the presence and absence of NTA by measuring the calcium binding affinity of fluorescent cardiac troponin C. These findings demonstrate that EGTA, when used in conjunction with NTA, improves and expands the regulation of free calcium in solution.  相似文献   
93.
It is proposed that the hydronium ion, H3O+, binds to the E1 conformation of the alpha-subunit of gastric proton pump. The H3O+ binding cavities are characterized parametrically based on valence, sequence, geometry, and size considerations from comparative modeling. The cavities have scope for accommodating monovalent cations of different ionic radii. The H3O+ transport is proposed to be aided by arenes which are arranged regularly along the pump starting from N-domain through the transmembrane region. Step-by-step structural changes accompanying H3O+ occlusion are studied in detail. The observations corroborate well with earlier experimental studies.  相似文献   
94.
95.
Gelatin is used as a stabilizer in several vaccines. Allergic reactions to gelatins have been reported, including anaphylaxis. These gelatins are derived from animal tissues and thus represent a potential source of contaminants that cause transmissible spongiform encephalopathies. We have developed a low molecular weight human sequence gelatin that can substitute for the animal sourced materials. A cDNA fragment encoding 101 amino acids of the human proalpha1 (I) chain was amplified, cloned into plasmid pPICZalpha, integrated into Pichia pastoris strain X-33, and isolates expressing high levels of recombinant gelatin FG-5001 were identified. Purified FG-5001 was able to stabilize a live attenuated viral vaccine as effectively as porcine gelatin. This prototype recombinant gelatin was homogeneous with respect to molecular weight but consisted of several charge isoforms. These isoforms were separated by cation exchange chromatography and found to result from a combination of truncation of the C-terminal arginine and post-translational phosphorylation. Site-directed mutagenesis was used to identify the primary site of phosphorylation as serine residue 546; serine 543 was phosphorylated at a low level. A new construct was designed encoding an engineered gelatin, FG-5009, with point mutations that eliminated the charge heterogeneity. FG-5009 was not recognized by antigelatin IgE antibodies from children with confirmed gelatin allergies, establishing the low allergenic potential of this gelatin. The homogeneity of FG-5009, the ability to produce large quantities in a reproducible manner, and its low allergenic potential make this a superior substitute for the animal gelatin hydrolysates currently used to stabilize many pharmaceuticals.  相似文献   
96.
A nonpeptidic, cation-conducting channel has been designed, synthesized, and evaluated. The channel was found to conduct protons and Na+ through phospholipid bilayers. The evaluation of Na+ transport was conducted using a dynamic 23Na-NMR (nuclear magnetic resonance) in phospholipid vesicles and a planar bilayer using a patch clamp amplifier. Several control compounds were prepared to determine which of the structural “modules” were necessary. Experiments using fluorescent residues and fluorescence energy transfer were undertaken to locate the channel within the bilayer and to demonstrate that the channel functions as a monomeric unit.  相似文献   
97.
Abstract

Enzymatic cyclizations of squalene and oxidosqualene lead to sterols and other triterpenoids in bacteria, fungi, plants, and animals. The cyclases for these reactions catalyze formation and stabilization of polycyclic carbocations and direct the enzyme-specific, templated formation of new carbon-carbon bonds in regio- and stereochemically defined contexts. The development of mechanism-based irreversible inhibitors, photoactivatable inhibitors, and numerous substrate analogs have helped to unravel the stepwise events occurring in the catalytic sites of these enzymes by covalent modification of specific amino acid residues.  相似文献   
98.
Mycorrhizas are mutually beneficial associations between soil-borne fungi and plant roots. Mycorrhizal fungi provide their host plant with essential nutrients in exchange for sugars and/or lipids. Traditionally, transport and translocation of macronutrients, including nitrogen and phosphorus, throughout the fungal mycelium and towards the host plant are well studied. However, the regulation of nutrient exchange and their contribution in the morphogenesis and development of mycorrhizas remains unclear. In this Opinion, we argue that adding micronutrients in the current models of symbiotic transport is essential to fully understand the establishment, maintenance, and functioning of mycorrhizal associations. Homeostatic mechanisms at the cellular level and the first transport proteins involved have been recently documented for zinc (Zn) in arbuscular mycorrhizal, ectomycorrhizal, and ericoid mycorrhizal fungi. Mycorrhizal plants benefit from an improved Zn status in control conditions and are better protected when environmental Zn availability fluctuates. These recent progresses are paving the way for a better understanding of micronutrient allocation in mycorrhizas. Revising our vision on the role of micronutrients, particularly of Zn, in these interactions will allow a better use of mycorrhizal fungi in sustainable agriculture and forestry, and will increase management practices in waste land, as well as in agricultural and natural ecosystems.  相似文献   
99.
Tang LR  Huang B  Ou W  Chen XR  Chen YD 《Bioresource technology》2011,102(23):10973-10977
Cellulose nanocrystals (CNC) were prepared from microcrystalline cellulose (MCC) by hydrolysis with cation exchange resin (NKC-9) or 64% sulfuric acid. The cation exchange resin hydrolysis parameters were optimized by using the Box–Behnken design and response surface methodology. An optimum yield (50.04%) was achieved at a ratio of resin to MCC (w/w) of 10, a temperature of 48 °C and a reaction time of 189 min. Electron microscopy (EM) showed that the diameter of CNCs was about 10–40 nm, and the length was 100–400 nm. Regular short rod-like CNCs were obtained by sulfuric acid hydrolysis, while long and thin crystals of cellulose were obtained with the cation exchange resin. X-ray diffraction (XRD) showed that, compared with MCC, the crystallinity of H2SO4-CNC and resin-CNC increased from 72.25% to 77.29% and 84.26%, respectively. The research shows that cation exchange resin-catalyzed hydrolysis of cellulose could be an excellent method for manufacturing of CNC in an environmental-friendly way.  相似文献   
100.
The vesicular nucleotide transporter (VNUT) is a secretory vesicle protein that is responsible for the vesicular storage and subsequent exocytosis of ATP (Sawada, K., Echigo, N., Juge, N., Miyaji, T., Otsuka, M., Omote, H., and Moriyama, Y. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 5683-5686). Because VNUT actively transports ATP in a membrane potential (Δψ)-dependent manner irrespective of divalent cations such as Mg(2+) and Ca(2+), VNUT recognizes free ATP as a transport substrate. However, whether or not VNUT transports chelating complexes with divalent cations remains unknown. Here, we show that proteoliposomes containing purified VNUT actively took up Mg(2+) when ATP was present, as detected by atomic absorption spectroscopy. The VNUT-containing proteoliposomes also took up radioactive Ca(2+) upon imposing Δψ (positive-inside) but not ΔpH. The Δψ-driven Ca(2+) uptake required ATP and a millimolar concentration of Cl(-), which was inhibited by Evans blue, a specific inhibitor of SLC17-type transporters. VNUT in which Arg-119 was specifically mutated to alanine, the counterpart of the essential amino acid residue of the SLC17 family, lost the ability to take up both ATP and Ca(2+). Ca(2+) uptake was also inhibited in the presence of various divalent cations such as Mg(2+). Kinetic analysis indicated that Ca(2+) or Mg(2+) did not affect the apparent affinity for ATP. RNAi of the VNUT gene in PC12 cells decreased the vesicular Mg(2+) concentration to 67.7%. These results indicate that VNUT transports both nucleotides and divalent cations probably as chelating complexes and suggest that VNUT functions as a divalent cation importer in secretory vesicles under physiological conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号