首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   1篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   7篇
  1996年   7篇
  1995年   10篇
  1994年   11篇
  1993年   4篇
  1992年   9篇
  1991年   16篇
  1990年   9篇
  1989年   6篇
  1988年   4篇
  1987年   11篇
  1986年   6篇
  1985年   7篇
  1984年   12篇
  1983年   11篇
  1982年   15篇
  1981年   10篇
  1980年   12篇
  1979年   11篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1973年   4篇
  1972年   1篇
  1970年   1篇
排序方式: 共有260条查询结果,搜索用时 93 毫秒
91.
Previous work indicates that the heavy chain of tetanus toxin is responsible for the binding of the toxin to the neuronal membrane and its subsequent internalization. In the present study, the light chain of tetanus toxin mimicked the holotoxin in inhibiting Ca2+-dependent secretion of [3H]norepinephrine from digitonin-permeabilized adrenal chromaffin cells. Preincubation of tetanus toxin with monoclonal antibodies to the light chain prevented the inhibition by tetanus toxin. Preincubation of tetanus toxin with nonimmune ascites fluid or with monoclonal antibodies directed against the C fragment (the C-terminal of the heavy chain) or the heavy-chain portion of the B fragment did not prevent inhibition by tetanus toxin. The data indicate that the light chain is responsible for the intracellular blockade of exocytosis.  相似文献   
92.
The uptake of 22Na+ and secretion of catecholamines by primary cultures of adrenal medulla cells under the influence of a variety of agonists and antagonists were determined. Veratridine, batrachotoxin, scorpion venom, and nicotine caused a parallel increase in 22Na+ uptake and Ca2+-dependent catecholamine secretion. Ba2+, depolarizing concentrations of K+, and the Ca2+ ionophore Ionomycin stimulated secretion of catecholamines but did not increase the uptake of 22Na+. Tetrodotoxin inhibited both 22Na+ uptake and catecholamine secretion evoked by veratridine, batrachotoxin, and scorpion venom, but had no effect on 22Na+ uptake and catecholamine secretion caused by nicotine. On the other hand, histrionicotoxin, which blocks the acetylcholine receptor-linked ion conductance channel, blocked nicotine-stimulated 22Na+ uptake and catecholamine secretion, but only partially inhibited veratridine-stimulated catecholamine secretion and had no effect on veratridine-stimulated 22Na+ uptake. The combination of veratridine plus tetrodotoxin, which has been shown to prevent nicotine-stimulated secretion of catecholamines by adrenal medulla cells, also prevented nicotine-stimulated 22Na+ uptake by the primary cultures. These studies demonstrate the presence of tetrodotoxin-sensitive Na+ channels in adrenal medulla cells which are functionally linked to Ca2+-dependent catecholamine secretion. However, These channels are not utilized for Na+ entry upon activation of nicotinic receptors; in this case Na+ entry occurs through the receptor-associated ion conductance channel.  相似文献   
93.
Abstract: A new method of measuring catecholamine (CA) sulfate permitted us to detect its presence in rat brain for the first time. The procedure consisted of separating the CA sulfate from the free CA by alumina adsorption followed by passage through Dowex, and measuring the CA sulfate by a radioenzymatic assay in the presence of a sulfatase. This method permitted demonstration of the presence of dopamine sulfate, and occasionally, of norepinephrine and epinephrine sulfate in the hypothalamus, striatum, and hippocampus of rat brain.  相似文献   
94.
Studies have been carried out in the turkey erythrocyte to examine: (1) the influence of external K+ concentration on both [3H]ouabain binding and the sensitivity of potassium influx to inhibition by ouabain and (2) the quantitative relation between β-adrenergic receptor site occupancy, agonist-directed cyclic AMP generation and potassium influx rate. Both [3H]ouabain binding and the ability of ouabain to inhibit potassium influx are markedly reduced at increasing external K+ concentrations, and at each K+ concentration the concentrations of ouabain required for half-maximal binding to the erythrocyte membrane and for half-maximal inhibition of potassium influx are identical. Both basal and isoproterenol-stimulated potassium influx rise with increasing external K+ concentrations. In contrast to basal potassium influx, which is 50–70% inhibitable by ouabain, the isoproterenol-stimulated component of potassium influx is entirely insensitive to ouabain. At all concentrations of K+, inhibition of basal potassium influx by ouabain is linear with ouabain binding, indicating that the rate of transport per unoccupied ouabain binding site is unaffected by simultaneous occupancy of other sites by ouabain. Similarly, the rate of isoproterenol-stimulated cyclic AMP synthesis is directly proportional to β-adrenergic receptor occupancy over the entire concentration-response relationship for isoproterenol, showing that at all levels of occupancy β-adrenergic receptor sites function independently of each other.Analysis of the relation of catecholamine-dependent potassium transport to the number of β-adrenergic receptor sites occupied indicates an extremely sensitive physiological system, in which 50%-maximal stimulation of potassium transport is achieved at less than 3% receptor occupancy, corresponding to fewer than ten occupied receptors per cell.  相似文献   
95.
Staurosporine, a potent inhibitor of protein kinases, is used to study the involvement of protein kinases in cellular processes. In the present studies, the effect of prolonged staurosporine treatment on catecholamine secretion in cultured bovine adrenal chromaffin cells was examined. Staurosporine inhibits catecholamine release stimulated by 10 microM nicotine, depolarizing concentrations of potassium (56 mM KCl), and 2 mM BaCl2. The effects of staurosporine on KCl-stimulated release are time dependent, with a half-time of approximately 50 min and a maximal inhibition at 2 h. Our results indicate that activation of a staurosporine-sensitive protein kinase is not directly involved in the stimulus-secretion coupling process. This does not rule out the possibility that Ca2+/phospholipid-dependent protein kinase or other protein kinases may acutely modulate release. However, these results suggest that a protein(s), which is phosphorylated by a staurosporine-sensitive protein kinase(s), is required to maintain the integrity of the stimulus-secretion coupling process.  相似文献   
96.
A study of the effects of dihydropyridine Ca2+ channel modulators on the release of catecholamines from perfused rat adrenal glands, evoked by electrical stimulation of their splanchnic nerves, is presented. Electrically mediated secretory responses were compared to chemically mediated responses (exogenous acetylcholine, nicotine, or high K+). Intensities of stimuli were selected to produce quantitatively similar secretory responses (between 100 and 200 ng per stimulus). The main finding of the study is that responses to transmural stimulation (300 pulses at 1 or 10 Hz) and to acetylcholine were inhibited only partially (about 50%) by isradipine, an L-type Ca2+ channel blocker. In contrast, responses to high K+ (17.5 mM for 2 min) were highly sensitive to isradipine (IC50 = 8.2 nM). Responses to nicotine were also fully inhibited by this drug. Bay K 8644 (an L-type Ca2+ channel activator) potentiated mildly the secretory responses to electrical stimulation at 10 Hz and to acetylcholine, but increased threefold the responses to K+ and nicotine. It is, therefore, likely that responses mediated by high K+ or nicotinic receptors are triggered by external Ca2+ gaining access to the internal secretory machinery through L-type, dihydropyridine-sensitive voltage-dependent Ca2+ channels. However, in addition to nicotinic receptors, the physiological stimulation of adrenal medulla chromaffin cells through splanchnic nerves has other components, i.e., muscarinic receptor stimulation or the release of cotransmitters such as vasoactive intestinal polypeptide. The poorer sensitivity to dihydropyridines of secretory responses triggered by electrical stimulation of splanchnic nerve terminals or exogenous acetylcholine speaks in favor of alternative Ca2+ pathways, probably some dihydropyridine-resistant Ca2+ channels, in modulating the physiological adrenal catecholamine secretory process.  相似文献   
97.
Time of occurrence of cardiac death due to arrhythmia, heart failure, or acute myocardial infarction was recorded in 86 elderly subjects, belonging to a group in whom circadian and circannual rhythms in blood pressure and urinary catecholamine excretion had been studied previously. All patients were retired, with no work responsibilities, and lived-closely-supervised in a home for the aged-on a routine that provided little differences between weekdays and weekends. Cardiac mortality showed a circadian variation, with a peak in the early morning hours, coinciding with the circadian peak in systolic and diastolic blood pressures. A weekly (circaseptan) variation in cardiac mortality was found, with the greatest number of patients dying on Mondays and the least on Thursdays. There were seasonal differences in cardiac mortality, with a peak in July and a broader peak during the cold season (December to February). The former coincides with the circannual peak in diastolic blood pressure, but is unrelated to the seasonal variation in norepinephrine excretion. Circadian, circaseptan, and circannual variations in cardiac mortality appear to be the expression of time-dependent, transient risk states for catastrophic cardiac events, which may lend themselves to preventive treatment.  相似文献   
98.
Summary The distribution of monoamines in the diencephalon and pituitary of the dogfish, Scyliorhinus canicula, has been investigated using the histochemical fluorescence technique of Falck and Hillarp (Falck and Owman, 1965). Terminals of monoamine-containing axons were found in the neurointermediate lobe of the pituitary and the axons were traced, by means of nialamide and L-dopa treatment and lesions, to the nucleus medius hypothalamicus. A separate hypothalamic system converging on the anterior median eminence and the occurrence of aminergic cells in the nuclei lobi inferiores and nucleus medius hypothalamicus were similarly demonstrated. Normal fish show a bilateral uncrossed tegmental tract and two areas of catecholamine-containing neurones in modified ependymal organs. The organum vasculosum hypothalami includes both primary catecholamine and 5-hydroxytryptamine-containing cell types whilst the organum vasculosum praeopticum has only the former type. Both organs contain cells which send club-like processes into the third ventricle. The subcommissural organ does not contain monoamines.The role of hypothalamic catecholamine systems in the regulation of pituitary function is discussed.  相似文献   
99.
The present work shows that α-adrenergic agonists induce the suppression of basal and hormone-stimulated cyclic AMP levels in rat intestinal epithelial cells. Epinephrine (100 μM) suppresses by 35% the cyclic AMP levels evoked by the vasoactive intestinal peptide (VIP). The adrenergic agent induces a similar percentage of inhibition at 15, 30 and 37°C. Addition of epinephrine 20 min prior to, on 5 or 20 min after VIP yields the same magnitude of inhibition as when performed together with the stimulus. The α-adrenergic agent does not alter the K0.5 of VIP in stimulating cyclic AMP production but reduces its efficacy. Epinephrine also suppresses prostaglandin E1- and E2-stimulated cyclic AMP levels by about 35%. The lowest effective concentration of epinephrine required to suppress VIP-stimulated cyclic AMP levels is 0.1 μM, half-maximal (K0.5) and maximal effects being observed at 5 and 100 μM, respectively. Norepinephrine has the same efficacy but a slightly lower potency (K0.5 = 18 μM) than epinephrine. Phenylephrine acts as a partial agonist of very low potency; clonidine has very little intrinsic activity and antagonizes the inhibition by epinephrine. The inhibition of VIP-stimulated cyclic AMP levels is observed in the absence of any blocking agents. It is not affected by the β blocker propranolol, but is completely reversed with α blockers with the following order of potency: dihydroergotamine>yohimbine>phentolamine. Yohimbine is much more potent than prazosin, which only partially reverses the inhibition induced by epinephrine. It is concluded that α-adrenoreceptors of the α2 subtype mediate the suppression of VIP-stimulated cyclic AMP levels in intestinal epithelial cells. This effect is likely to be due to the inhibition of adenylate cyclase within intact cells as epinephrine is able to reduce adenylate cyclase activity of intestinal epithelial cell plasma membranes.  相似文献   
100.
Post-translational modification of peptidyl tyrosine to peptidyl dopa is widely observed in different marine organisms. While peptidyl dopas are oxidatively converted to dehydrodopa derivatives, nothing is known about the further fate of dehydrodopyl compounds. To fill this void, we studied the oxidation chemistry of a peptidyl dehydrodopa mimic, 1,2-dehydro-N-acetyldopa methyl ester with mushroom tyrosinase. We employed both routine biochemical studies and reversed phase liquid chromatography mass spectrometry to investigate the course of the reaction. Tyrosinase catalyzed the oxidation of 1,2-dehydro-N-acetyldopa methyl ester readily generating its typical o-quinone as the transient two-electron oxidation product. This quinone was extremely unstable and rapidly reacted with the parent compound forming benzodioxan type oligomeric products. Reaction mixture containing chemically made o-benzoquinone and 1,2-dehydro-N-acetyldopa methyl ester generated a mixed adduct of benzoquinone and 1,2-dehydro-N-acetyldopa methyl ester. Based on this finding, we propose that peptidyl dehydrodopa also exhibits a similar transformation accounting partially for the adhesive and cementing properties of dopyl proteins in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号