首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   1篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   7篇
  1996年   7篇
  1995年   10篇
  1994年   11篇
  1993年   4篇
  1992年   9篇
  1991年   16篇
  1990年   9篇
  1989年   6篇
  1988年   4篇
  1987年   11篇
  1986年   6篇
  1985年   7篇
  1984年   12篇
  1983年   11篇
  1982年   15篇
  1981年   10篇
  1980年   12篇
  1979年   11篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1973年   4篇
  1972年   1篇
  1970年   1篇
排序方式: 共有260条查询结果,搜索用时 390 毫秒
71.
Abstract: Secretion of catecholamines by adrenal chromaffin cells is a highly regulated process that involves serine/threonine and tyrosine phosphorylations. The nonreceptor tyrosine kinase pp60c-sre is expressed at high levels and localized to plasma membranes and secretory vesicle membranes in these cells, suggesting an interaction of this enzyme with components of the secretory process. To test the hypothesis that pp60c-sic is involved in exocytosis, we transiently expressed exogenous c-src cDNA using a vaccinia virus vector in primary cultures of bovine adrenomedullary chromaffin cells. Chromaffin cells infected with a c-src recombinant virus restored the diminished secretory activity accompanying infection by wild type virus alone or a control recombinant virus. The level of enhanced catecholamine release correlated directly with the time and level of exogenous c-src expression. These results could not be attributed to differences in cytopathic effects of wild type versus recombinant viruses as assessed by cell viability assays, nor to differences in norepinephrine uptake or basal release, suggesting that pp60c-src is involved in stimulus-secretion coupling in infected cells. Surprisingly, exogenous expression of an enzymatically inactive mutant c-src also restored catecholamine release, indicating that regions of the introduced c-src protein other than the kinase domain may affect catecholamine release. Secretory activity was elevated by both forms of c-src in response to either nicotine or carbachol (which activate the nicotinic and the nicotinic/muscarinic receptors, respectively). In contrast, release of catecholamines upon membrane depolarization (as elicited by 55 mM K+) or by treatment with the calcium ionophore A23187 was unaffected by either vaccinia infection or increased levels of pp60c-src. These results suggest that pp60c-src affects secretory processes in vaccinia-infected cells that are activated through ligand-gated, but not voltage-gated, ion channels.  相似文献   
72.
Abstract: The temporal resolution of carbon-fiber microelectrodes has been exploited to examine the plasticity of quantal secretory events at individual adrenal medullary cells. The size of individual quantal events, monitored by amperometric oxidation of released catecholamines, was found to be dependent on the extracellular ionic composition, the secretagogue, and the order of depolarization delivery. Release was observed with either exposure to 60 m M K+ in the presence of Ca2+ or exposure to 3 m M Ba2+ in solutions of different pH, with and without external Ca2+. Ba2+ was demonstrated to induce Ca2+-independent exocytotic release for an extended period of time (>4 min) relative to release induced by K+ (∼30 s), which is Ca2+ dependent. In all cases, simultaneous changes of intracellular divalent cations, monitored by fura-2 fluorescence, accompanied quantal release and had a similar time course. Exocytosis caused by Ba2+ in Ca2+-free medium had a larger mean spike area at pH 8.2 than at pH 7.4. When Ba2+-induced spikes measured at pH 7.4 were compared, the spikes in Ca2+-free medium were found to be broader and shorter but had the same area. Release induced by K+ after exposure to Ba2+ was comprised of larger quantal events when compared with preceding K+ stimulations. Finally, spikes obtained with Ba2+ exposure at an extracellular pH of 5.5 had a different shape than those obtained in more basic solutions. These changes in spike size and shape are consistent with the interactions between catecholamines and other intravesicular components.  相似文献   
73.
Abstract: "Synaptic-like microvesicles" are present in all neuroendocrine cells and cell lines. Despite their resemblance to small synaptic vesicles of the CNS. a thorough biochemical characterization is lacking. Moreover, the subcellular distribution of synaptophysin, the most abundant integral membrane protein of small synaptic vesicles, in adrenal medulla is still controversial. Using gradient centrifugation. we were able to compare the distribution of several markers for small synaptic vesicles and chromaffin granules. Synaptophysin was found at a high density (1.16 g/ml), purifying away from dopamine β-hydroxylase and cytochrome b561. Both noradrenaline and adrenaline showed a parallel distribution with synaptophysin, suggesting their presence in synaptic-like microvesicles. Experiments in the presence of tetrabenazine did not influence the catecholamine content. Additionally, tetrabenazine binding showed a consistent shoulder in the region of synaptophysin. [3H]-Noradrenaline uptake was blocked by tetrabenazine, but not by desipramine. Also chromogranin A parallels the distribution of synaptophysin: however, a localization in the Golgi cannot be ruled out. Synaptophysin was shown to undergo very fast phosphorylation, together with another triplet protein of ∼ 18 kDa. In contrast, the latter showed a rather bimodal distribution coinciding with synaptophysin and dopamine β-hydroxylase. Immunoelectron microscopy of synaptic-like microvesicle fractions showed an intense labeling for synaptophysin on 60-90-nm organelles. Whereas abundant gold labeling for cytochrome b561 was found over the entire surface of chromaffin granules, synaptophysin labeling was encountered mostly on vesicles adsorbed to granules. We conclude that catecholamines might be stored in synaptic-like microvesicles of the chromaffin cell.  相似文献   
74.
Summary The vacuolated neurons (VN) of the main hypogastric ganglion of the male rat were studied using the formaldehyde-induced fluorescence (FIF) method for the histochemical demonstration of catecholamines. Microspectrofluorimetry was performed to identify the fluorophores and to quantify the FIF. The thiocholine method (Koelle-Gomori) was used to demonstrate acetylcholinesterase activity. The fine structure of the VN was studied using glutaraldehyde/OsO4 fixation.(1) In the untreated adult male rat VN represent only a small population of the total number of hypogastric neurons (0.8–1.2%). The vacuoles are similar to those of the VN from the corresponding female ganglion. (2) The VN are considered to be adrenergic due to the nature of their fluorophore, indicating a primary catecholamine. (3) The first VN appear in the hypogastric ganglia at the age of 7 weeks. After testosterone administration to young rats, VN are found at the age of 4 weeks. (4) The basic fine structure of the VN is similar to that of other ordinary neurons of the hypogastric ganglia. (5) The content of the vacuoles could not be identified. (6) Indications of degeneration were not observed in the VN. (7) The VN are interpreted as being a functional stage of the short adrenergic neurons, which are under the control of steroid hormones. (8) Fifteen months after castration, no VN could be found in the hypogastric ganglia, while their number was normal in the corresponding control animals.  相似文献   
75.
Summary Catecholamines (CA) were localized in stage 11–34 domestic fowl embryos by the formaldehyde-induced fluorescence (FIF) method after exposure in vivo or in vitro to CA (noradrenaline or -methylnoradrenaline), or the CA precursorl-DOPA. The effects of drugs known to alter CA metabolism in the adult were also investigated.Negligible FIF was observed in embryos which had not been exposed to CA. After CA loading, FIF could be seen in the neural tube and in non-neural tissues such as the notochord and gut mesenchyme and to a lesser degree in suprarenal area tissue, liver endothelium, sclerotome, and myotome. This FIF was inhibited by desmethylimipramine, a blocker of adult neuronal CA uptake (Uptake1), but not by corticosterone, a blocker of adult extraneuronal CA uptake (Uptake2). The notochord, dorsal pancreas and some blood cells were fluorescent afterl-DOPA loading, and this FIF could be greatly diminished by the DOPA decarboxylase inhibitor RO4-4602.The pattern of FIF in the axial structures (neural tube and notochord) correlated with axial flexure in both position and time, and the intensity of fluorescence was strongest cranially and caudally, where flexure is most pronounced. The FIF in gut mesenchyme cells was closely related to the movement of the intestinal protals during early gut tube formation, and to the regions of the developing intestine that undergo intense morphogenesis during their early formation.  相似文献   
76.
Human 125I-labelled VLDL interacts with rat adipocytes in vitro, with properties typical of a ligand-receptor interaction. This VLDL-receptor interaction is modulated by hormones which are known to change cyclic AMP levels. Norepinephrine and isoproterenol, both of which elevate cyclic AMP, increase the binding of VLDL to adipocytes. Dibutyryl-cyclic AMP, a derivative of cyclic AMP, also increases the VLDL binding to adipocytes. Insulin reverses the catecholamine-induced increase in VLDL binding. This parallels insulin's effect on the catecholamine-induced changes in cyclic AMP. Direct addition of cyclic AMP itself increases VLDL binding to adipocyte membranes, a system in which no lipolysis or new protein synthesis occurs. Based on the competition between unlabelled VLDL and 125I-labelled VLDL, we conclude that catecholamines act on adipocytes, and cyclic AMP on membrane fractions, by increasing their capacity rather than their affinity to bind VLDL.  相似文献   
77.
Abstract: The properties of the catecholamine-storing organelles from transplantable rat phaeochromocytoma and rat adrenal glands were compared by density gradient centrifugation. It was shown that tumour granules are more heterogeneous and less dense than adrenal granules. Both granule preparations can take up catecholamines and nucleotides by a process driven by an electrochemical proton gradient. Dopamine β-hydroxylase and glycoprotein III were analysed by immunological techniques. Glycoprotein III was shown to be a specific component of chromaffin granules. Tumour tissue (average weight 700 mg) contains amounts of these antigens comparable to those in 210 adrenals. The biosynthesis of granules in the tumour apparently occurs at a low rate, making turnover studies difficult. The transplantable rat phaeochromocytoma is very useful for studies on the uptake properties and the immunological characteristics of rat catecholamine storage granules because one tumour provides an amount of material that could otherwise be obtained only from a large number of adrenal glands.  相似文献   
78.
Adenosine was shown to inhibit norepinephrine (NE) release from sympathetic nerve endings. The purpose of this study was to examine whether endogenous adenosine restrains NE and epinephrine release from the adrenal medulla. The effects of an adenosine receptor antagonist, 1,3-dipropyl-8-(p-sulfophenyl) xanthine (DPSPX), on epinephrine and NE release induced by intravenous administration of insulin in conscious rats were examined. Plasma catecholamines were measured by HPLC with an electrochemical detector. DPSPX significantly increased plasma catecholamine in both control rats and rats treated with insulin. The effect of DPSPX on plasma catecholamine was significantly greater in rats treated with insulin. Additional experiments were performed in adrenalectomized rats to investigate the contribution of the adrenal medulla to the effect of DPSPX on plasma catecholamine. The effect of DPSPX and insulin on epinephrine in adrenalectomized rats was significantly reduced compared with that of the controls. Finally, we tested whether endogenous adenosine restrains catecholamine secretion partially through inhibiting the renin-angiotensin system. The effect of DPSPX on plasma catecholamine in rats pretreated with captopril (an angiotensin-converting enzyme inhibitor) was reduced. These results demonstrate that under basal physiological conditions, endogenous adenosine tonically inhibits catecholamine secretion from the adrenal medulla, and this effect is augmented when the sympathetic system is stimulated. The effect of endogenous adenosine on catecholamine secretion from the adrenal medulla is achieved partially through the inhibitory effect of adenosine on the renin-angiotensin system.  相似文献   
79.
We investigated whether similar increments in venous plasma norepinephrine (NE) concentration caused by exercise and by intravenous NE infusion will elevate plasma norepinephrine sulfate (NES) to similar concentrations. In randomized order venous plasma NE concentration was elevated to similar concentrations by bicycle exercise (BE; 65% VO(2)max) and by intravenous NE infusion at rest (INF; 0.14 microg/min/kg). N = 11 subjects participated in the study. Increments in plasma NE and the area under curve of plasma NE were similar during BE (11.2 +/- 1.3 nM; 411 +/- 23 nM/min; means +/- S.E.) and INF (12.6 +/- 1.9 nM; 429 +/- 27 nM/min). Plasma NES was significantly elevated to similar concentrations with BE (from 5.7 +/- 1.0 to 8.5 +/- 1.3 nM) and with INF (from 5.6 +/- 0.9 to 8.9 +/- 1.0 nM). Plasma NE and NES concentration during control conditions remained unchanged. Heart rate decreased significantly to 43 +/- 1 beats/min with INF and increased significantly to 162 +/- 3 beats/min with BE. Systolic blood pressure increased with both, INF and BE (155 +/- 3 mmHg; 179 +/- 6 mmHg, respectively). Present findings firstly show that intravenously infused NE is sulfoconjugated in humans, indicating that a major part of NE is sulfoconjugated in blood or at sites easily accessible from blood. Secondly, plasma NE may be a useful additional marker for NES release.  相似文献   
80.
Recent findings indicate that glucose uptake by contracting hindlimb #Acta Physiol. Scand. (1982) 116, 215-222 #and heart #Biochem. Biophys. Res. Commun. (1982) 108, 124-131 # of the rat is stimulated by epinephrine acting through alpha-adrenergic mechanisms. Since in exercise hepatic glucose output may be increased markedly by activation of alpha-adrenergic receptors and matched by the increase in muscle glucose uptake (maintaining blood glucose levels relatively constant), it is now proposed that a general coordination of glucose metabolism may operate via alpha-adrenergic receptor mechanisms. The basis for this proposal is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号