首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   24篇
  国内免费   4篇
  2022年   2篇
  2021年   2篇
  2020年   6篇
  2019年   12篇
  2018年   11篇
  2017年   7篇
  2016年   10篇
  2015年   17篇
  2014年   58篇
  2013年   31篇
  2012年   55篇
  2011年   73篇
  2010年   42篇
  2009年   33篇
  2008年   50篇
  2007年   63篇
  2006年   47篇
  2005年   24篇
  2004年   34篇
  2003年   37篇
  2002年   20篇
  2001年   2篇
  2000年   18篇
  1999年   21篇
  1998年   6篇
  1997年   2篇
排序方式: 共有683条查询结果,搜索用时 750 毫秒
11.
The objective of this study was to test the hypothesis that cytoskeletal actin fragmentation is mediated through caspase-2, specifically examining the ability of a caspase-2 inhibitor to interfere with actin fragmentation, in comparison with a caspase-3 inhibitor. Cardiomyocytes were cultured from embryonic chick heart. The fine structural element of cellular F-actin was visualized by staining cardiomyocytes with NBD-phallacidin. Lovastatin induced a dramatic and concentration-dependent loss of intact F-actin. The selectivity of this effect of lovastatin was demonstrated by the absence of similar changes in F-actin when cardiomyocytes were treated with the apoptotic stimulus palmitate, the metabolism of which produces acetyl CoA, the early substrate of cholesterol synthesis, through the mevalonate pathway. FACS analysis of NBD-phallacidin-stained cells was used to quantify the amount of F-actin loss. Actin fragmentation produced by lovastatin was operative through a caspase-2 pathway, as the caspase-2 inhibitor, z-VDVAD-fmk, significantly blocked lovastatin-induced changes in F-actin, but the caspase-3 inhibitor, Ac-DEVD-CHO, did not. Interruption of the mevalonate pathway was in part responsible for lovastatin's action, as the downstream metabolite mevalonate partially reversed the effect of lovastatin on actin fragmentation. These data indicate a previously unrecognized link between cytoskeletal actin and caspase-2.  相似文献   
12.
Cytotoxic effects of nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) are considered to be one of the major causes of inflammatory diseases. On the other hand, protective effects of NO on toxic insults-induced cellular damage/apoptosis have been demonstrated recently. Ultraviolet B (UVB)-induced apoptosis of epidermal keratinocytes leads to skin inflammation and photoageing. However, it has not been elucidated what kind of effects NO has on UVB-induced keratinocyte apoptosis. Thus, in the present study, we investigated the problem and demonstrated that NO from NO donor suppressed UVB-induced apoptosis of murine keratinocytes. In addition, NO significantly suppressed activities of caspase 3, caspase 8 and caspase 9 that had been upregulated by UVB radiation. NO also suppressed p53 expression that had been upregulated by UVB radiation and upregulated Bcl-2 expression that had been downregulated by UVB radiation. These findings suggested that NO might suppress UVB-induced keratinocyte apoptosis by regulating apoptotic signaling cascades in p53, Bcl-2, caspase3, caspase 8 and caspase 9.  相似文献   
13.
Rhein is an anthraquinone compound enriched in the rhizome of rhubarb, a traditional Chinese medicine herb showing anti-tumor promotion function. In this study, we first reported that rhein could induce apoptosis in human promyelocytic leukemia cells (HL-60), characterized by caspase activation, poly(ADP)ribose polymerase (PARP) cleavage, and DNA fragmentation. The efficacious induction of apoptosis was observed at 100 microM for 6h. Mechanistic analysis demonstrated that rhein induced the loss of mitochondrial membrane potential (DeltaPsi(m)), cytochrome c release from mitochondrion to cytosol, and cleavage of Bid protein. Rhein also induced generation of reactive oxygen species (ROS) and the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 kinase. However, these actions seem not to be associated with the apoptosis induction because antioxidants including N-acetyl cysteine (NAC), Tiron, and catalase did not block rhein-induced apoptosis, although they could block the generation of ROS and the phosphorylation of JNK and p38 kinase. Our data demonstrate that rhein induces apoptosis in HL-60 cells via a ROS-independent mitochondrial death pathway.  相似文献   
14.
The c-Jun N-terminal kinases (JNKs) are a subfamily of the mitogen-activated protein kinases (MAPKs). The JNKs are encoded by three separate genes (jnk1, jnk2, and jnk3), which are spliced alternatively to create 10 JNK isoforms that are either p46 or p54 in size. In this study, we found that the p52 form of JNK emerged in human leukemia MOLT-4 or U937 cells following X-irradiation or heat treatment. The accumulation of p52 coincided with the reduction of p54 JNK. On the other hand, the amounts of p46 JNK did not change by X-irradiation. Induction of the p52 form of JNK also paralleled the appearance of the active form of caspase-3 and was suppressed by a caspase-specific inhibitor, Ac-DEVD-CHO, but not by Ac-YVAD-CHO. In vitro cleavage assays indicated that recombinant human JNK1beta2 and JNK2beta2 were cleaved by caspase-3, and that the mutation of aspartic acid at position 413 of JNK1beta2 or 410 of JNK2beta2 to alanine abolished the cleavage. Altogether, our results demonstrated that p54 JNKs, at least JNK1beta2 and JNK2beta2, were new selective targets of caspases in JNK splicing variants, and suggested that the p52 form could serve as a marker of apoptosis.  相似文献   
15.
Progression of the cell cycle and control of apoptosis are tightly linked processes. It has been reported that manifestation of apoptosis requires cdc2 kinase activity yet the mechanism(s) of which is largely unclear. In an attempt to study the role of human MDM2 (HDM2) in interphase and mitosis, we employed the Xenopus cell-free system to study HDM2 protein stability. Interestingly, HDM2 is specifically cleaved in Xenopus mitotic extracts but not in the interphase extracts. We demonstrate that HDM2 cleavage is dependent on caspase-3 and that activation of cdc2 kinase results in caspase-3 activation in the Xenopus cell-free system. Furthermore, expression of cdc2 kinase in mammalian cells leads to activation of caspase-3 and apoptosis. Taken together, these data indicate that deregulation of cdc2 kinase activity can trigger apoptotic machinery that leads to caspase-3 activation and apoptosis.  相似文献   
16.
A microbial secondary metabolite, arisostatins A (As-A), was originally discovered as a substance carrying the antibiotic activity against Gram-positive bacteria and shown to possess potent anti-tumor properties. The mechanism by which arisostatins A initiates apoptosis remains poorly understood. In the present report we investigated the effect of arisostatins A on activation of the apoptotic pathway in HN-4 cells. Arisostatins A was shown to be responsible for the inhibition of HN-4 cell growth by inducing apoptosis. Treatment with 4 microM arisostatins A for 24h produced morphological features of apoptosis and DNA fragmentation in HN-4 cells. Arisostatins A caused dose-dependent apoptosis and DNA fragmentation of HN-4 cells used as a model. Treatment with caspase inhibitor significantly reduced the arisostatins A-induced caspase 3 activation. In addition, arisostatins A-induced apoptosis was associated with the generation of reactive oxygen species (ROS), which was prevented by an antioxidant NAC (N-acetyl-cysteine). These data indicate that cytotoxic effect of arisostatins A on HN-4 cells is attributable to the induced apoptosis and that arisostatins A-induced apoptosis is mediated by caspase-3 activation pathway, loss of mitochondrial transmembrane potential (DeltaPsi(m)), and release of cytochrome c into cytosol.  相似文献   
17.
Expression of free short peptides could potentially be used to modulate biochemical cascades and consequently to change cellular phenotypes. Here we demonstrate that expression of a short peptide of 15 amino acids, including the pseudo-substrate site of the baculovirus-apoptosis inhibitor P35, Asp-Gln-Met-Asp (DQMD), leads to abrogation of the apoptotic cascade. Treatment of cells, expressing the DQMD peptide with two apoptosis inducers, etoposide and sodium nitroprusside, (SNP) results in blocking of the apoptotic cascade, indicated by DNA fragmentation and caspase activation. Consequently, stable expression of the DQMD peptide led to protection of cells, following induction of apoptosis and to the outgrowth and enrichment of resistant cell colonies. The results presented in this work demonstrate for the first time the feasibility of expressing in cells functional short peptides that block apoptotic cascade, and to rescue the phenotypically altered cells in a stable fashion. This approach is general and could be applied to the study of other peptides and the respective biochemical cascades.  相似文献   
18.
Early events of apoptosis following HSV-1 infection were investigated at the single-cell level using intensified fluorescence digital-imaging microscopy. The results provide evidence that infection of differentiated ND7 neuronlike cells by HSV-1 triggers detectable alterations indicative of physiological changes associated with the early stages of apoptosis. Less than 1 h after infection with HSV-1 (KOS strain) or K26GFP (GFP being fused to HSV-1 capsid protein VP26) we observed (i) moderate decrease in mitochondrial membrane potential (about 20%), (ii) exposure of phosphatidyl serine, (iii) morphological change in the mitochondria that became spherical instead of filamentous, and (iv) activation of caspase-8. Within 3 h changes reverted to normal, which indicated that apoptosis was counteracted very early following HSV-1 infection. Similar results were obtained with KOS-TK27GFP, lacking TK and UL24 proteins, suggesting that TK and UL24 play no role in apoptosis. In Vero cells mitochondrial changes characteristic of the apoptotic process were not observed following HSV-1 infection. The UV-inactivated K26GFP had the capacity to induce apoptosis in neuronlike cells. This real-time multiparametric analysis, in combination with relevant viral mutants, could be a useful approach for dissecting the roles of various viral genes in modulating apoptotic pathways during infection.  相似文献   
19.
Jung KC  Kim NH  Park WS  Park SH  Bae Y 《FEBS letters》2003,554(3):478-484
The CD99 antigen has been implicated in various cellular processes, including apoptosis in T cells. Previously, we reported two monoclonal antibodies that recognize different epitopes of the CD99 molecule, named DN16 and YG32. In this study, we investigated the role of each CD99 epitope in T cell apoptosis. Unlike the DN16 epitope, CD99 ligation via the YG32 epitope failed to induce T cell death. Surprisingly, however, the YG32 signal enhanced Fas-mediated apoptosis in Jurkat T cells. Augmentation of Fas-mediated apoptosis by YG32 ligation was inhibited by treatment with either of the caspase inhibitors z-VAD-fmk or z-IETD-fmk, and YG32 ligation appeared to induce Fas oligomerization. These results suggest that each CD99 epitope plays a distinct role in T cell biology, especially in T cell apoptosis.  相似文献   
20.
Iron is an essential element for the neoplastic cell growth, and iron chelators have been tested for their potential anti-proliferative and cytotoxic effects. To determine the mechanism of cell death induced by iron chelators, we explored the pathways of the three structurally related mitogen-activated protein (MAP) kinase subfamilies during apoptosis induced by iron chelators. We report that the chelator deferoxamine (DFO) strongly activates both p38 MAP kinase and extracellular signal-regulated kinase (ERK) at an early stage of incubation, but slightly activates c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) at a late stage of incubation. Among three MAP kinase blockers used, however, the selective p38 MAP kinase inhibitor SB203580 could only protect HL-60 cells from chelator-induced cell death, indicating that p38 MAP kinase serves as a major mediator of apoptosis induced by iron chelator. DFO also caused release of cytochrome c from mitochondria and induced activation of caspase 3 and caspase 8. Interestingly, treatment of HL-60 cells with SB203580 greatly abolished cytochrome c release, and activation of caspase 3 and caspase 8. Collectively, the current study reveals that p38 MAP kinase plays an important role in iron chelator-mediated cell death of HL-60 cells by activating downstream apoptotic cascade that executes cell death pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号