首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3391篇
  免费   470篇
  国内免费   647篇
  2024年   4篇
  2023年   94篇
  2022年   91篇
  2021年   157篇
  2020年   177篇
  2019年   188篇
  2018年   153篇
  2017年   156篇
  2016年   157篇
  2015年   187篇
  2014年   184篇
  2013年   211篇
  2012年   174篇
  2011年   195篇
  2010年   118篇
  2009年   177篇
  2008年   191篇
  2007年   206篇
  2006年   190篇
  2005年   161篇
  2004年   157篇
  2003年   132篇
  2002年   136篇
  2001年   106篇
  2000年   110篇
  1999年   98篇
  1998年   85篇
  1997年   50篇
  1996年   65篇
  1995年   53篇
  1994年   46篇
  1993年   39篇
  1992年   49篇
  1991年   39篇
  1990年   24篇
  1989年   19篇
  1988年   28篇
  1987年   23篇
  1986年   12篇
  1985年   11篇
  1984年   4篇
  1983年   9篇
  1982年   11篇
  1981年   3篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1975年   3篇
  1958年   2篇
排序方式: 共有4508条查询结果,搜索用时 218 毫秒
121.
Aim We combine evidence from palaeoniche modelling studies of several tree species to estimate the extent of Central American forest during the Last Glacial Maximum (LGM). In particular, we ask whether the distributions of these species are likely to have changed since the LGM, and whether LGM distributions coincide with previously proposed Pleistocene refugia in this area. Location Central American wet and seasonally dry forests. Methods We developed ecological niche models using two simulations of Pleistocene climate and occurrence data for 15 Neotropical plant species. We focused on palaeodistribution models of three ‘focal’ tree species that occur in wet and seasonally dry Central American forests, where recent phylogeographic data suggest Pleistocene differentiation coincident with previously proposed refugia. We added predictions from six wet‐forest and six seasonally dry‐forest obligate plant species to gauge whether Pleistocene range shifts were specific to habitat type. Correlation analyses were performed between projected LGM and present distributions, LGM distributions and previously proposed refugia. We also asked whether modelled palaeodistributions were smaller than their current extents. Results According to our models, the ranges of the study species were not reduced during the LGM, and did not correlate with refugial models, regardless of habitat type. Relative range sizes between present and LGM distributions did not indicate significant range changes since the LGM. However, relative range sizes differed overall between the two palaeoclimate models. Main conclusions Many of the modelled palaeodistributions of study species were not restricted to refugia during the LGM, regardless of forest type. While constrained from higher elevations, most species found suitable habitat at coastal margins and on newly exposed land due to lowered sea levels during the LGM. These results offer no corroboration for Pleistocene climate change as a driver of genetic differentiation in the ‘focal’ species. We offer alternative explanations for genetic differentiation found in plant species in this area.  相似文献   
122.
123.
124.
125.
126.
Suboptimal health status (SHS), a physical state between health and disease, is a subclinical and reversible stage of chronic disease. Previous studies have shown alterations in the intestinal microbiota in patients with some chronic diseases. This study aimed to investigate the association between SHS and intestinal microbiota in a case‐control study with 50 SHS individuals and 50 matched healthy controls. Intestinal microbiota was analysed by MiSeq 250PE. Alpha diversity of intestinal microbiota in SHS individuals was higher compared with that of healthy controls (Simpson index, W = 2238, P = .048). Beta diversity was different between SHS and healthy controls (P = .018). At the phylum level, the relative abundance of Verrucomicrobia was higher in the SHS group than that in the controls (W = 2201, P = .049). Compared with that of the control group, nine genera were significantly higher and five genera were lower in abundance in the SHS group (all P < .05). The intestinal microbiota, analysed by a random forest model, was able to distinguish individuals with SHS from the controls, with an area under the curve of 0.79 (95% confidence interval: 0.77‐0.81). We demonstrated that the alteration of intestinal microbiota occurs with SHS, an early stage of disease, which might shed light on the importance of intestinal microbiota in the primary prevention of noncommunicable chronic diseases.  相似文献   
127.
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees’ phenotypic variability, which is, in turn, affected by long‐term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree‐level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree‐, site‐, and drought‐related factors and their interactions driving the tree‐level resilience to extreme droughts. We used a tree‐ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid‐elevation and low productivity sites from 1980–1999 to 2000–2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree‐level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long‐term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.  相似文献   
128.
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号