首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4925篇
  免费   66篇
  国内免费   47篇
  2023年   16篇
  2022年   17篇
  2021年   41篇
  2020年   90篇
  2019年   76篇
  2018年   85篇
  2017年   66篇
  2016年   34篇
  2015年   88篇
  2014年   228篇
  2013年   246篇
  2012年   248篇
  2011年   367篇
  2010年   269篇
  2009年   211篇
  2008年   233篇
  2007年   210篇
  2006年   194篇
  2005年   171篇
  2004年   181篇
  2003年   164篇
  2002年   98篇
  2001年   59篇
  2000年   94篇
  1999年   94篇
  1998年   113篇
  1997年   106篇
  1996年   103篇
  1995年   115篇
  1994年   79篇
  1993年   81篇
  1992年   98篇
  1991年   82篇
  1990年   80篇
  1989年   71篇
  1988年   74篇
  1987年   65篇
  1986年   54篇
  1985年   54篇
  1984年   79篇
  1983年   50篇
  1982年   48篇
  1981年   32篇
  1980年   27篇
  1979年   9篇
  1978年   12篇
  1977年   11篇
  1976年   3篇
  1972年   3篇
  1971年   3篇
排序方式: 共有5038条查询结果,搜索用时 15 毫秒
61.
Preincubation of rat brain synaptosomes with xanthine and xanthine oxidase (X/XO) in Ca2+-free Krebs buffer resulted in a 27% inhibition of synaptosomal gamma-aminobutyric acid (GABA) uptake. Addition of 1.5 mM CaCl2 increased the inhibition with X/XO to 46%, and inhibition was essentially complete when the calcium ionophore A23187 also was included. In other studies, preincubation of purified rat brain mitochondria with the combination of X/XO and 4 microM CaCl2 produced a significant (38%) decrease in state 3 respiration with glutamate/malate as substrate that was not seen with either X/XO or Ca2+ alone. Similar results were obtained using cultured mouse spinal cord neurons in which incubation with X/XO/ADP/FeCl2 and A23187 produced membrane damage as assessed by a 32% reduction of neuronal Na+, K+-ATPase activity. Neither X/XO/ADP/FeCl2 nor A23187 alone caused detectable inhibition. These results demonstrate the synergistic damaging effect of free radicals and Ca2+ on membrane function. In addition, they suggest that free radical-induced peroxidation of membrane lipid, occurring focally during complete or nearly complete ischemia in vivo, could result in intense cellular perturbation when coupled with increased intracellular Ca2+.  相似文献   
62.
The effect of N-methyl-D,L-aspartic acid (NMA) on extracellular amino acids was studied in the rabbit hippocampus with the brain dialysis technique. Administration of 0.5 or 5 mM NMA caused a concentration-dependent liberation of taurine and phosphoethanolamine (PEA). Taurine increased by 1,200% and PEA by 2,400% during perfusion with 5 mM NMA whereas most other amino acids rose by 20-100%. The effect of NMA appeared to be receptor-mediated, as coperfusion with D-2-amino-5-phosphonovaleric acid curtailed the NMA response by some 90%. The NMA-stimulated release of taurine and PEA was suppressed when Ca2+ was omitted and further inhibited when Co2+ was included in the perfusion medium. The effect of NMA was mimicked by the endogenous NMA agonist quinolinic acid and the partial NMA agonist D,L-cis-2,3-piperidine dicarboxylic acid. Although the NMA-evoked release of taurine and PEA was Ca2+-dependent in vivo, NMA had no effect on Ca2+ accumulation in hippocampal synaptosomes. The previously reported NMA-induced activation of dendritic Ca2+ spikes and the lack of effect on synaptosomal Ca2+ uptake suggest that taurine and PEA are released from sites other than nerve terminals, possibly from dendrosomatic sites. This notion was strengthened by the absence of an effect of NMA on the efflux of radiolabelled taurine from hippocampal synaptosomes. In contrast, high K+ stimulated synaptosomal uptake of Ca2+ and release of taurine.  相似文献   
63.
Summary Antimonate staining procedures and energy dispersive X-ray microanalytical techniques were used to determine the patterns of localization of calcium in nonstimulated and gravistimulated corn roots. In horizontally positioned roots within the region of the developing bend there was a change in the staining from that principally localized within cells of the stele to asymmetric staining within the vacuoles of the cortical cells along the upper root surface. There was little staining in the walls. The pattern observed is quite different from that seen in gravistimulated coleoptiles. Staining of mitochondria, plastids and Golgi stacks was seen in most cell types, but no asymmetry of staining was observed. In the rootcap where graviperception is thought to occur, there was little staining of any cellular organelles.  相似文献   
64.
Summary The actin-activated ATPase activityPhysarum myosin was shown to be inhibited of M levels of Ca2+. To determine if Ca2+ regulates ATP-dependent movement ofPhysarum myosin on actin, latex beads coated withPhysarum myosin were introduced intoChara cells by intracellular perfusion. In perfusion solution containing EGTA, the beads moved along the parallel arrays ofChara actin filaments at a rate of 1.0–1.8 m/sec; however, in perfusion solution containing Ca2+, the rate reduced to 0.0–0.7 m/sec. The movement of beads coated with scallop myosin, whose actin-activated ATPase activity is activated by Ca2+, was observed only in the perfusion solution containing Ca2+, indicating that myosin is responsible for the inhibitory effect of Ca2+ onPhysarum myosin movement. The involvement of this myosin-linked regulation in the inhibitory effect of Ca2+ on the cytoplasmic streaming observed inChara internodal cell andPhysarum plasmodium was discussed.Abbreviations ATP adenosine 5-triphosphate - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycolbis(-aminoethylether) N,N,N,N-tetraacetic acid - PIPES piperazine-N,N-bis(2-ethanesulfonic acid)  相似文献   
65.
Norepinephrine (NE)-induced contractile responses were less in aortic strips from SH compared to WKY rats. ACTH 1-24 potentiated NE responses in both SH and WKY aortic strips. This effect was more potent in SH aortic strips. NE-induced contractions in SH aortic strips were less sensitive to changes in external Ca2+ levels than were those of WKY aortic strips. ACTH 1-24 did not potentiate NE responses under low external Ca2+ conditions in SH aortic strips or under high external Ca2+ conditions in WKY aortic strips. The greater sensitivity of NE responses following ACTH 1-24 in SH aortic strips may imply that this peptide is modulating a mechanism related to an impaired contractility and that Ca2+ plays a key role in the observed effects.  相似文献   
66.
The release of GABA induced by veratridine shows no correlation with the synaptosomal Ca content and is therefore not mediated by the release of mitochondrial Ca. Instead, with both Ca-repleted and -depleted synaptosomes, the extent of GABA efflux is correlated with the decrease in plasma membrane potential. The slow release of GABA induced by protonophores and the Ca-dependent release induced by ionophore A23187 are also consequences of the depolarization of the plasma membrane, rather than of elevated cytosolic Ca. Finally, the ability of verapamil to inhibit the release of GABA induced by low veratridine concentrations is due to the ability of the Ca channel inhibitor to antagonize the action of veratridine, rather than to inhibit Ca entry into the synaptosome. It is concluded that it is essential to monitor plasma membrane potentials in experiments in which amino acid efflux from synaptosomes is induced.  相似文献   
67.
Abstract: Neural retina from most species contains 3,4-dihydroxyphenylethylamine (dopamine) receptors coupled to stimulation of adenylate cyclase activity. It has been demonstrated that release of dopamine from its neurons and subsequent occupation of dopamine receptors is increased by light. In this study, we have shown that adenylate cyclase activity in bovine retina is highly responsive to the endogenous Ca2+-binding protein, cal-modulin, and that calmodulin can increase dopamine-sen-sitive adenylate cyclase activity in bovine retina. We further demonstrate that both dopamine- and calmodulin-stimulated adenylate cyclase activities can be regulated by alterations in light. Bovine retinas were dissected from the eye under a low-intensity red safety light, defined as dark conditions, and incubated for 20 min in an oxygenated Krebs Henseleit buffer under either dark or light conditions. The retinas were then homogenized and adenylate cyclase activity measured in a paniculate fraction washed to deplete it of endogenous Ca2+ and calmodulin. Activation of adenylate cyclase activity by calmodulin, dopamine, and the nonhydrolyzable GTP analog, gua-nosine-5′-(β,γ-imido)triphosphate (GppNHp), was significantly (60%) greater in paniculate fractions from retinas that had been incubated under dark conditions as compared to those incubated under light conditions. Basal, Mn2+-, and GTP-stimulated adenylate cyclase activities were not altered by changes in lighting conditions. Calmodulin could increase the maximum stimulation of adenylate cyclase by dopamine in retinas incubated under either dark or light conditions, but the degree of its effect was greater in retinas incubated under light conditions. Activation of adenylate cyclase by calmodulin, dopamine, and GppNHp in paniculate fractions from retinas incubated under light conditions was indistinguishable from the activation obtained when retinas were incubated in the dark in the presence of exogenous dopamine. These results suggest that an increased release of dopamine occurs in light. The decreased response of adenylate cyclase to exogenous dopamine can then be explained by a subsequent down-regulation of dopamine receptor activity. The down-regulation of dopamine receptor activity can also regulate activation of adenylate cyclase by GppNHp and calmodulin. The results suggest that dopamine, calmodulin, and GppNHp are modulators of a common component of adenylate cyclase activity, and this component is regulated by light.  相似文献   
68.
Abstract: The effects of ions on the binding of the excitatory amino acid analogue dl -[3H]2-amino-4-phosphon-obutyrate to l -glutamate-sensitive sites on rat brain synaptic membranes was investigated. The divalent cations manganese, magnesium, strontium, and particularly calcium, produced a marked enhancement in specific binding. However, this effect was manifest only in the presence of added chloride, or to a lesser extent, with bromide ions. Application of saturation analysis revealed that both chloride and calcium acted to increase the binding site density in a concentration-dependent manner, without affecting the dissociation constant. The only other ionic species found to have a significant effect on 2-amino-4-phosphonobutyrate binding was sodium, which produced an apparent reduction in site affinity, without modifying the binding site density. Although the significance of these striking ionic effects is as yet unknown, it seems feasible that chloride (and possibly also calcium) ions may serve a role in regulating the interaction of excitatory amino acids with their physiological receptors.  相似文献   
69.
K+-stimulated 45Ca2+ uptake into rat brain and guinea pig cerebral cortex synaptosomes was measured at 10 s and 90 s at K+ concentrations of 5-75 mM. Net increases in 45Ca2+ uptake were observed in rat and guinea pig brain synaptosomes. 45Ca2+ uptake under resting or depolarizing conditions was not increased by the 1,4-dihydropyridine BAY K 8644, which has been shown to activate Ca2+ channels in smooth and cardiac muscle. High-affinity [3H]nitrendipine binding in guinea pig synaptosomes (KD = 1.2 X 10(-10) M, Bmax = 0.56 pmol mg-1 protein) was competitively displaced with high affinity (IC50 2.3 X 10(-9) M) by BAY K 8644. Thus high-affinity Ca2+ channel antagonist and activator binding sites exist in synaptosome preparations, but their relationship to functional Ca2+ channels is not clear.  相似文献   
70.
A decline in the calcium-dependent release of neurotransmitters appears to underlie the decreased neuronal function that accompanies reduced oxygen tensions (hypoxia). To determine if alterations in calcium uptake are primary to these changes, synaptosomal calcium uptake was measured in the presence of 100%, 2.5%, or 0% oxygen. Calcium uptake declined 60.2 +/- 0.1 and 82.4 +/- 2.5% with 2.5% and 0% when compared with 100% oxygen, respectively. 3,4-Diaminopyridine stimulated calcium uptake by synaptosomes when they were incubated in low-potassium media. It also diminished the hypoxic-induced decline in calcium uptake to 30.6 +/- 3.1 and 33.5 +/- 3.1% with 2.5% and 0% oxygen, respectively. External binding to the synaptosomal plasma membrane declined to 29.2 +/- 0.3 or 11.8 +/- 0.9% when the oxygen tension was reduced to 2.5% or 0% oxygen. 3,4-Diaminopyridine increased this superficial binding from 111.7 +/- 0.3 to 86.5 +/- 0.9 or 23.4 +/- 0.9% with 100%, 2.5%, or 0% oxygen when compared with 100% oxygen without 3,4-diaminopyridine, respectively. Thus, the decline in neuronal processing that accompanies acute hypoxia may be due to altered calcium homeostasis, which diminishes neurotransmitter release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号