首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43795篇
  免费   1575篇
  国内免费   1779篇
  2023年   397篇
  2022年   499篇
  2021年   670篇
  2020年   855篇
  2019年   1065篇
  2018年   1092篇
  2017年   925篇
  2016年   936篇
  2015年   864篇
  2014年   1965篇
  2013年   3427篇
  2012年   1339篇
  2011年   2045篇
  2010年   1457篇
  2009年   1968篇
  2008年   2146篇
  2007年   2138篇
  2006年   1830篇
  2005年   1710篇
  2004年   1396篇
  2003年   1357篇
  2002年   1123篇
  2001年   875篇
  2000年   788篇
  1999年   736篇
  1998年   772篇
  1997年   718篇
  1996年   703篇
  1995年   664篇
  1994年   681篇
  1993年   618篇
  1992年   586篇
  1991年   514篇
  1990年   471篇
  1989年   463篇
  1988年   411篇
  1987年   428篇
  1986年   295篇
  1985年   699篇
  1984年   972篇
  1983年   649篇
  1982年   758篇
  1981年   605篇
  1980年   545篇
  1979年   490篇
  1978年   308篇
  1977年   294篇
  1976年   238篇
  1974年   190篇
  1973年   192篇
排序方式: 共有10000条查询结果,搜索用时 734 毫秒
991.
992.
Substantial quantities of mRNA encoding the abundant Em polypeptide accumulate, in planta, in developing embryos of maize (Zea mays L.). By contrast, accumulation of Em mRNA is only barely detectable in embryos with the vp-5/vp-5 genotype [an abscisic acid (ABA)-deficient viviparous phenotype]. Em mRNA is not detectable within viviparous embryos of the vp-1/vp-1 genotype that are non-responsive to ABA. Culture of immature wild-type and vp-5/vp-5 embryos in the presence of exogenous ABA or of an osmotically active agent prevents precocious germination and results in expression of the Em genes. When vp-1/vp-1 embryos are cultured under similar conditions, only the application of osmotic stress prevents precocious germination. However, Em mRNA does not accumulate either in ABA-treated or stressed, arrested embryos, indicating a requirement for ABA perception through a VP-1-mediated mechanism for Em gene expression. Nevertheless, vp-1/vp-1 embryos do show both ABA and stress responses at the molecular level. Treatment with ABA causes the accumulation of mRNA encoding a polypeptide of approx. 30 kDa, whilst osmotic stress induces the accumulation both of a 30-kDa polypeptide and a set of approx. 20-kDa polypeptides. This indicates the existence of discrete, parallel ABA and stress response pathways in developing maize embryos.Abbreviations ABA abscisic acid - cDNA copy-DNA - DAP days after pollination - kDa kilodaltons - MS Murashige and Skoog medium - LEA late embryogenesis abundant - NEpHGE non-equilibrium pH gradient gel electrophoresis - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   
993.
In a culture system in which single cells isolated from the mesophyll of Zinnia elegans L. differentiate to tracheary elements (TEs), two inhibitors of phenylalanine ammonia-lyase (EC 4.3.1.5), L-α-aminooxy-β-phenylpropionic acid (AOPP) at 10 μM inhibited lignification without reducing the number of TEs formed. These inhibitors caused intracellular changes in peroxidase (EC 1.11.1.7) activities. The inhibitors increased the activity of peroxidases bound to the cell walls and especially the activity of peroxidase bound ionically to the cell walls. In contrast, the activity of extracellular peroxidase decreased. There were five isoenzymes, P1-P5, in the ionically bound peroxidase of cultured Zinnia cells. Among the isoenzymes, P4 and P5 appeared to be specific for TE differentation. Treatment with AOPP and AIP resulted in increases in the activities of P2, P4 and P5 isoenzymes, with the most prominent increase in P5 activity. The addition of lignin precursors, including coniferyl alcohol, to the AOPP-treated cells restored lignification, and suppressed the alteration of peroxidase isoenzyme patterns caused by AOPP. The relationship between the wall-bound peroxidases and lignification during TE differentiation is discussed in the light of these results.  相似文献   
994.
D. Michaud  A. Seye  A. Driouich  S. Yelle  L. Faye 《Planta》1993,191(3):308-315
The present study describes the biochemical characteristics of an acid -fructosidase (EC 3.2.1.26) purified from the fruit of sweet pepper (Capsicum annuum L.). The soluble form, which constitutes more than 95% of the total activity at pH 4.5, hydrolyzes sucrose, raffinose, and stachyose. Its pH and temperature optima are 4.5 and 55 °C, respectively. Metal cations such as Ag+ and Hg2+ strongly inhibit its activity, suggesting the presence of at least one sulfhydryl group at the catalytic site. After purification of the enzyme by means of ammonium sulfate fractionation, gel chromatography (diethyl-aminoethyl-Sephacel, hydroxylapatite, concanavalin A-Sepharose), and preparative gel electrophoresis, the purified enzyme was shown to be a 42 kDa glycoprotein interacting specifically with concanavalin A. After complete chemical deglycosylation with trifluoromethanesulfonic acid, the molecular weight of the constitutive polypeptide was estimated to be 39 kDa. The enzyme glycans were characterized using both affino- and immunodetection. The enzyme has at least two N-linked oligosaccharide sidechains, one of the high-mannose type, and the other of the complex type. The high-mannose glycan has a low molecular weight (1 kDa), and is responsible for the interaction between the enzyme and concanavalin A. The complex-type glycan has an estimated molecular weight of 2 kDa. It contains one 1 2-linked xylose residue, probably one fucose residue 1 3-linked to the chitobiose unit, and no terminal galactose residue. The two glycans, associated to the 39 kDa polypeptide, constitute the acid -fructosidase of the sweet-pepper fruit.Abbreviations F -fructosidase - ConA concanavalin A - DEAE diethylaminoethyl - DTNB dithionitrobenzoic acid - endo F endo--N-acetylglucosamidase F - endo H endo--N-acetylglucosamidase H - NEM N-ethylmaleimide - PCMB parachloromercurobenzoate - PNGase glycopeptide-N-glycosidase - TFMS trifluoromethane sulfonic acid This work was partly supported by a grant from the Commission Permanente de Coopération Franco-Québécoise to L. Faye, and S. Yelle. D. Michaud was a recipient of a graduate scholarship from the Natural Science and Engineering Research Council of Canada.  相似文献   
995.
Subcellular volumes and metabolite concentrations in barley leaves   总被引:26,自引:1,他引:25  
Metabolite concentrations in subcellular compartments from mature barley (Hordeum vulgare L. cv. Apex) leaves after 9 h of illumination and 5 h of darkness were determined by nonaqueous fractionation and by the stereological evaluation of cellular and subcellular volumes from light and electron micrographs. Twenty one-day-old primary leaves of barley with a total leaf volume of 902 μL per mg chlorophyll were found to be composed of 27% epidermis, 42% mesophyll cells, 6% veins, 4.5% apoplast and 23% gas space. While in epidermal cells 99% of the volume was occupied by the vacuole, mesophyll cells with an average volume of 31.3 pL consisted of 23 pL (73%) vacuole, 4.6 pL (19%) chloroplasts, 2.06 pL (6,7%) cytosol (including smaller organelles and vesicles), 0.34 pL (1%) mitochondria and 107 fL (0.34%) nucleus. The differences between leaves harvested after 9 h of illumination and after 5 h of darkness were in the size of the stromal compartment and the starch grains therein. Subcellular metabolite concentrations were calculated from the compartmental volumes and metabolite contents of the compartments as determined by nonaqueous fractionation. The amino-acid concentrations in stroma and cytosol were rather similar after 9 h of illumination and 5 h of darkness. In contrast, the vacuolar amino-acid concentrations were about one order of magnitude lower than the stroma and cytosol values, and there was a slight increase in concentration after 5 h of darkness.  相似文献   
996.
Fatty acid-binding proteins (FABP) are abundant cytosolic proteins whose level is responsive to nutritional, endocrine, and a variety of pathological states. Although FABPs have been investigatedin vitro for several decades, little is known of their physiological function. Liver L-FABP binds both fatty acids and cholesterol. Competitive binding analysis and molecular modeling studies of L-FABP indicate the presence of two ligand binding pockets that accomodate one fatty acid each. One fatty acid binding site is identical to the cholesterol binding site. To test whether these observations obtainedin vitro were physiologically relevant, the cDNA encoding L-FABP was transfected into L-cells, a cell line with very low endogenous FABP and sterol carrier proteins. Uptake of both ligands did not differ between control cells and low expression clones. In contrast, both fatty acid uptake and cholesterol uptake were stimulated in the high expression cells. In high expression cells, uptake of fluorescent cis-parinaric acid was enhanced more than that of trans-parinaric acid. This is consistent with the preferential binding of cis-fatty acids to L-FABP but in contrast to the preferential binding of trans-parinaric acid to the L-cell plasma membrane fatty acid transporter (PMFABP). These data show that the level of cytosolic fatty acids in intact cells can regulate both the extent and specificity of fatty acid uptake. Last, sphingomyelinase treatment of L-cells released cholesterol from the plasma membrane to the cytoplasm and stimulated microsomal acyl-CoA: cholesteryl acyl transferase (ACAT). This process was accelerated in high expression cells. These observations show for the first time in intact cells that L-FABP, a protein most prevalent in liver and intestine where much fat absorption takes place, may have a role in fatty acid and cholesterol absorption.Abbreviations FABP fatty acid-binding protein - L-FABP liver fatty acid-binding protein - I-FABP intestinal fatty acid-binding protein - H-FABP heart fatty acid-binding protein - A-FABP adipocyte fatty acid-binding protein - PMFABP plasma membrane fatty acid-binding protein - SCP-2 sterol carrier protein-2 - Dehydroergosterol (DHE) d-5,7,9(11),22-ergostatetraene-3b-ol - cis-parinaric acid-9Z, 11E, 13E, 15Z-octatetraenoic acid - trans parinaric acid, 9E, 11E, 13E, 14E-octatetraenoic acid - BSA bovine serum albumin - KRH Krebs-Ringer-Henseleit buffer  相似文献   
997.
The amino acid composition of the diet ingested by reference and cafeteria diet-fed lean and obese Zucker rats has been analyzed from day 30 to 60 after birth. Their body protein amino acid composition was measured, as well as the urinary and faecal losses incurred during the period studied. The protein actually selected by the rats fed the cafeteria diet had essentially the same amino acid composition as the reference diet. The mean protein amino acid composition of the rat showed only small changes with breed, age or diet.Cafeteria-fed rats had a higher dietary protein digestion/absorption efficiency than reference diet-fed rats. Obese rats wasted a high proportion of dietary amino acids when given the reference diet, but not on the cafeteria diet. In all cases, the amino acids lost as such in the urine were a minimal portion of available amino acids.In addition to breed, the rates of protein accretion are deeply influenced by diet, but even more by the age — or size — of the animals: cafeteria-fed rats grew faster, to higher body protein settings, but later protein accrual decreased considerably; this is probably due to a limitation in the blueprint for growth which restricts net protein deposition when a certain body size is attained. Obese rats, however, kept accuring protein with high rates throughout.Diet composition — and not protein availability or quality-induced deep changes in amino acid metabolism. Since the differences in the absolute levels of dietary protein or carbohydrate energy ingested by rats fed the reference or cafeteria diets were small, it can be assumed that high (lipid) energy elicits the changes observed in amino acid metabolism by the cafeteria diet. The effects induced in the fate of the nitrogen ingested were more related to the fractional protein energy proportion than to its absolute values. Cafeteria-fed rats tended to absorb more amino acids and preserve them more efficiently; these effects were shown even under conditions of genetic obesity.There were deep differences in handling of dietary amino acids by dietary or genetically obese rats. The former manage to extract and accrue larger proportions of their dietary amino acids than the latter. The effects of both models of amino acid management were largely additive, suggesting that the mechanisms underlying the development of obesity did not run in parallel to those affecting the control of amino acid utilization. Obesity may be developed in both cases despite a completely different strategy of amino acid assimilation, accrual and utilization. (Mol Cell Biochem121: 45–58, 1993)  相似文献   
998.
A group of sialic acid binding (SAS) agglutinins has been isolated from the rat uteri at different stages [Proestrus (P), estrus (E) and diestrus (D)] of estrous cycle. Studies of biochemical properties indicate that SAS agglutinins are glycoprotein in nature having molecular weights between 28–31 Kd and microheterogenous pI. Function-based characterization revealed that inspite of the fact that all three proteins exhibit sialic acid binding property, the sialic acid binding affinities, calculated from Scatchard analysis, using 4-methylumbelliferyl sialic acid as a ligand, varied in stage specific manner (Ka:D-SAS-9.03×105 M–1, P-SAS-2.33×105 M–1, E-SAS-2.13×105 M–1). Circular dichroism spectra of these three agglutinins suggested that differences exist in the secondary structures of the proteins isolated from different stages. Removal of carbohydrate moiety by trifluoromethane sulfonic acid treatment and CNBr cleavage studies showed some homology between these proteins, however, the variation in the carbohydrate moiety was apparent from the sugar analysis data. Functionally and immunologically these proteins can be grouped as estrogenic and progestogenic SAS agglutinins.  相似文献   
999.
A particular lot of the zwitterionic buffer, 2(N-morpholino) ethane sulfonic acid (MES), contained a contaminant that inhibited a number of fungal NADP-dependent dehydrogenases. Enzymes that were particularly sensitive include 6-phosphogluconate dehydrogenases fromCryptococcus neoformans andSchizophyllum commune and glucose-6-phosphate dehydrogenase fromSchizophyllum commune. A number of NADP-dependent dehydrogenases of animal origin were tested and all were completely insensitive to inhibition except for rat liver 6-phosphogluconate dehydrogenase, which was 10-fold less sensitive than theCryptococcal enzyme. The pattern of inhibition in all cases was linear competitive versus NADP. The inhibitor has been purified and identified as an ethylenesulfonic acid oligomer. This inhibitor holds promise as a model compound for the development of a specific antifungal agent.  相似文献   
1000.
In the present investigation, we examined the role of trophoblast and parietal endoderm cells in the synthesis of carbohydrate-containing components of Reichert's membrane. To eliminate the function of Reichert's membrane as a filter between maternal and embryonal tissues we carried out our examination under in vitro conditions. Parietal yolk sac from mouse embryos on day 9 post coitum (p.c.) were cultivated for 0 to 5 days. Because tannic acid enables a complex formation between carbohydrates and osmium we chose the fixation with this acid for the ultrastructural study. Electron microscopy showed that for assembly of Reichert's membrane, trophoblast cells produce and then release components that were detected as tannic acid-positive granules both in the Reichert's membrane and in the vacuoles of the trophoblast cells. To localize specific carbohydrates we used postembedding-gold-lectin histochemistry on LR-GoldR-embedded tissues. Strong binding sites for the lectins WGA (Triticum vulgare), RCA I (Ricinus communis) and Con A (Canavalia ensiformis) were observed in Reichert's membrane and trophoblast cells but not in the parietal endoderm cells. The LTA (Lotus tetragonolobus)-binding pattern was positive in the membrane and its adjacent cells but that of the LFA (Limax flavus) was negative in the parietal endoderm cells and very weak in Reichert's membrane and trophoblast cells. Our results demonstrate that trophoblast cells are involved in the construction of Reichert's membrane through the production and release of specific glycoconjugates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号