首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53636篇
  免费   4439篇
  国内免费   1894篇
  2023年   788篇
  2022年   756篇
  2021年   1417篇
  2020年   1812篇
  2019年   2352篇
  2018年   2099篇
  2017年   1545篇
  2016年   1519篇
  2015年   1692篇
  2014年   3105篇
  2013年   3711篇
  2012年   2369篇
  2011年   3060篇
  2010年   2311篇
  2009年   2627篇
  2008年   2860篇
  2007年   2790篇
  2006年   2427篇
  2005年   2201篇
  2004年   1993篇
  2003年   1716篇
  2002年   1471篇
  2001年   1082篇
  2000年   877篇
  1999年   902篇
  1998年   802篇
  1997年   741篇
  1996年   687篇
  1995年   636篇
  1994年   666篇
  1993年   528篇
  1992年   496篇
  1991年   444篇
  1990年   345篇
  1989年   315篇
  1988年   261篇
  1987年   272篇
  1986年   216篇
  1985年   359篇
  1984年   490篇
  1983年   429篇
  1982年   438篇
  1981年   363篇
  1980年   360篇
  1979年   294篇
  1978年   235篇
  1977年   215篇
  1976年   217篇
  1975年   185篇
  1974年   166篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
41.
Using benzo(a)pyrene (BaP) as a probe for aryl hydrocarbon hydroxylase (AHH) activity, differences in mixed-function oxidase (MFO) activity were observed using microspectrofluorimetry in single living cells during long term treatment with 3-methylcholanthrene (3-MC) or carbaryl. Although these two compounds differ in chemical structure, similar effects were observed in 3T3 cell populations. The results suggest that the two compounds activate the same enzymatic system and that individual cells of a supposed homogeneous cell population are not equally sensitive to xenobiotics, i.e. subpopulations were observed which have differences in AHH activity.  相似文献   
42.
Markovska  Y.K.  Dimitrov  D.S. 《Photosynthetica》2001,39(2):191-195
For the first time the expression of C3 and CAM in the leaves of different age of Marrubium frivaldszkyanum Boiss, is reported. With increasing leaf age a typical C3 photosynthesis pattern and high transpiration rate were found. In older leaves a shift to CAM occurred and the 24-h transpiration water loss decreased. A correlation was established between leaf area and accumulation of malate. Water loss at early stages of leaf expansion may be connected with the shift to CAM and the water economy of the whole plant.  相似文献   
43.
A method for the detection of the specific binding of 3-methylcholanthrene to rat liver cytosolic proteins is described. The separation of the protein-bound 3-methylcholanthrene from the free 3-methylcholanthrene was achieved using a batch DEAE-cellulose technique. Extraction of the DEAE-cellulose with 0.3 M KCl allowed the selective release and measurement of the amount of protein-bound 3-methylcholanthrene. The assay was optimized for the following parameters: time of incubation with DEAE-cellulose, time required for salt extraction, protein concentration, the concentration of KCl required to elute the specific binding proteins, the amount of DEAE-cellulose required to bind the specific binding proteins, and ligand specificity. The sedimentation properties of those 3-methylcholanthrene-binding proteins which were extracted with salt from DEAE-cellulose were examined on 5 to 20% sucrose gradients; the major binding species sedimented as a broad peak at 4.5 S.  相似文献   
44.
The receptor tyrosine kinases ErbB2 and ErbB3 are phosphorylated in response to injury of the airway epithelium. Since we have shown that the membrane mucin MUC4 can act as a ligand/modulator for ErbB2, affecting its localization in polarized epithelial cells and its phosphorylation, we questioned whether Muc4 was involved, along with ErbB2 and ErbB3, in the damage response of airway epithelia. To test this hypothesis, we first examined the localization of MUC4 in human airway samples. Both immunocytochemistry and immunofluorescence showed a co‐localization of MUC4 and ErbB2 at the airway luminal surface. Sequential immunoprecipitation and immunoblotting from airway cells demonstrated that the MUC4 and ErbB2 are present as a complex in airway epithelial cells. To assess the participation of MUC4 in the damage response, cultures of NCI‐H292 or airway cells were scratch‐wounded, then analyzed for association of phospho‐ErbB2 and ‐ErbB3 with MUC4 by sequential immunoprecipitation and immunoblotting. Wounded cultures exhibited increased phosphorylation of both receptors in complex with MUC4. Scratch wounding also increased activation of the downstream pathway through Akt, as predicted from our previous studies on Muc4 effects on ErbB2 and ErbB3. The participation of MUC4 in the phosphorylation response was also indicated by siRNA repression of MUC4 expression, which resulted in diminution of the phosphorylation of ErbB2 and ErbB3. These studies provide a new model for the airway epithelial damage response, in which the MUC4–ErbB2 complex is a key element in the sensor mechanism and phosphorylation of the receptors. J. Cell. Biochem. 107: 112–122, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
45.
We investigated the correlation between the beneficial effect of Lactobacillus acidophilus on gut microbiota composition, metabolic activities, and reducing cow's milk protein allergy. Mice sensitized with β‐lactoglobulin (β‐Lg) were treated with different doses of L. acidophilus KLDS 1.0738 for 4 weeks, starting 1 week before allergen induction. The results showed that intake of L. acidophilus significantly suppressed the hypersensitivity responses, together with increased fecal microbiota diversity and short‐chain fatty acids (SCFAs) concentration (including propionate, butyrate, isobutyrate, and isovalerate) when compared with the allergic group. Moreover, treatment with L. acidophilus induced the expression of SCFAs receptors, G‐protein–coupled receptors 41 (GPR41) and 43 (GPR43), in the spleen and colon of the allergic mice. Further analysis revealed that the GPR41 and GPR43 messenger RNA expression both positively correlated with the serum concentrations of transforming growth factor‐β and IFN‐γ (p < .05), but negatively with the serum concentrations of IL‐17, IL‐4, and IL‐6 in the L. acidophilus–treated group compared with the allergic group (p < .05). These results suggested that L. acidophilus protected against the development of allergic inflammation by improving the intestinal flora, as well as upregulating SCFAs and their receptors GPR41/43.  相似文献   
46.
Saturation and competitive binding analyses demonstrated the presence of a high affinity (KD = 0.92 nM), specific antiestrogen binding site (AEBS) in rat liver microsomes and at least 75% of total liver AEBS was recovered in this fraction. When microsomes were further separated into smooth and rough fractions, AEBS was concentrated in the latter. Subsequent dissociation of ribosomes from the rough membranes revealed that AEBS was associated with the membrane and not the ribosomal fraction. Antiestrogen binding activity could not be extracted from membranes with 1 M KCl or 0.5 M acetic acid but could be solubilized with sodium cholate. These data indicate that AEBS is an integral membrane component of the rough microsomal fraction of rat liver.  相似文献   
47.
The introduction of either PGF (10?7 M) or TPA (10?7 M) stimulated, ouabain-sensitive 86Rb+ influx at 30 min in postconfluent 3T3-4 mouse fibroblast cultures by 117% and 124%, respectively. Both TPA and PGF at these concentrations stimulated the incorporation of 3H-TdR into DNA. TPA had the greatest stimulatory effect, which was similar to that obtained with 10% fetal calf serum. In accord with the idea that modulation of membrane processes such as Na+/K+ pump activity in fibroblasts may reflect important events related to the initiation of DNA synthesis, it was observed that in both 3T3-4 and C3H-1 0T½ cells there were parallel increases in 3H-TdR incorporation and ouabain-sensitive 86Rb+ influxes with 10?7 M TPA, whereas PGF stimulated a significant increase in 3H-TdR incorporation in 3T3-4 but not C3H-10T½ cells and only marginal increases in ouabain-sensitive 86Rb+ influx in both. Therefore, although there appears to be a close correlation between Na+/K+ pump activation and subsequent S-phase entry following TPA stimulation, a similar correlation for PGF cannot be confirmed.  相似文献   
48.
  1. Plant–animal interactions are diverse and widespread shaping ecology, evolution, and biodiversity of most ecological communities. Carnivorous plants are unusual in that they can be simultaneously engaged with animals in multiple mutualistic and antagonistic interactions including reversed plant–animal interactions where they are the predator. Competition with animals is a potential antagonistic plant–animal interaction unique to carnivorous plants when they and animal predators consume the same prey.
  2. The goal of this field study was to test the hypothesis that under natural conditions, sundews and spiders are predators consuming the same prey thus creating an environment where interkingdom competition can occur.
  3. Over 12 months, we collected data on 15 dates in the only protected Highland Rim Wet Meadow Ecosystem in Kentucky where sundews, sheet‐web spiders, and ground‐running spiders co‐exist. One each sampling day, we attempted to locate fifteen sites with: (a) both sheet‐web spiders and sundews; (b) sundews only; and (c) where neither occurred. Sticky traps were set at each of these sites to determine prey (springtails) activity–density. Ground‐running spiders were collected on sampling days. DNA extraction was performed on all spiders to determine which individuals had eaten springtails and comparing this to the density of sundews where the spiders were captured.
  4. Sundews and spiders consumed springtails. Springtail activity–densities were lower, the higher the density of sundews. Both sheet‐web and ground‐running spiders were found less often where sundew densities were high. Sheet‐web size was smaller where sundew densities were high.
  5. The results of this study suggest that asymmetrical exploitative competition occurs between sundews and spiders. Sundews appear to have a greater negative impact on spiders, where spiders probably have little impact on sundews. In this example of interkingdom competition where the asymmetry should be most extreme, amensalism where one competitor experiences no cost of interaction may be occurring.
  相似文献   
49.
We previously isolated a Serratia marcescens O5: HI Z-54 strain which produces a new reddish-violet pigment, a peptide- ferropyrimine complex. This study showed that polymyxin B enhances the formation of the pigment about threefold. This occurs because polymyxin B in the medium causes the formation of an iron-polymyxin B complex which imposes a low iron stress on the bacteria and, in turn, enhances pigment production. This shows that polymyxin B is both a membrane-disrupting and ionophoric antibiotic.  相似文献   
50.
Iridoid glycosides are plant defence compounds that are deterrent and/or toxic for unadapted herbivores but are readily sequestered by dietary specialists of different insect orders. Hydrolysis of iridoid glycosides by β‐glucosidase leads to protein denaturation. Insect digestive β‐glucosidases thus have the potential to mediate plant–insect interactions. In the present study, mechanisms associated with iridoid glycoside tolerance are investigated in two closely‐related leaf beetle species (Coleoptera: Chrysomelidae) that feed on iridoid glycoside containing host plants. The polyphagous Longitarsus luridus Scopoli does not sequester iridoid glycosides, whereas the specialist Longitarsus tabidus Fabricius sequesters these compounds from its host plants. To study whether the biochemical properties of their β‐glucosidases correspond to the differences in feeding specialization, the number of β‐glucosidase isoforms and their kinetic properties are compared between the two beetle species. To examine the impact of iridoid glycosides on the β‐glucosidase activity of the generalist, L. luridus beetles are kept on host plants with or without iridoid glycosides. Furthermore, β‐glucosidase activities of both species are examined using an artificial β‐glucosidase substrate and the iridoid glycoside aucubin present in their host plants. Both species have one or two β‐glucosidases with different substrate affinities. Interestingly, host plant use does not influence the specific β‐glucosidase activities of the generalist. Both species hydrolyse aucubin with a much lower affinity than the standard substrate. The neutral pH reduces the β‐glucosidase activity of the specialist beetles by approximately 60% relative to its pH optimum. These low rates of aucubin hydrolysis suggest that the ability to sequester iridoid glycosides has evolved as a key to potentially preventing iridoid glycoside hydrolysis by plant‐derived β‐glucosidases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号