首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3925篇
  免费   186篇
  国内免费   40篇
  2024年   11篇
  2023年   43篇
  2022年   38篇
  2021年   84篇
  2020年   112篇
  2019年   137篇
  2018年   92篇
  2017年   69篇
  2016年   56篇
  2015年   74篇
  2014年   163篇
  2013年   193篇
  2012年   114篇
  2011年   198篇
  2010年   94篇
  2009年   154篇
  2008年   189篇
  2007年   178篇
  2006年   161篇
  2005年   96篇
  2004年   105篇
  2003年   74篇
  2002年   53篇
  2001年   50篇
  2000年   68篇
  1999年   61篇
  1998年   80篇
  1997年   66篇
  1996年   64篇
  1995年   80篇
  1994年   88篇
  1993年   63篇
  1992年   84篇
  1991年   84篇
  1990年   70篇
  1989年   79篇
  1988年   72篇
  1987年   75篇
  1986年   67篇
  1985年   82篇
  1984年   77篇
  1983年   70篇
  1982年   93篇
  1981年   82篇
  1980年   50篇
  1976年   9篇
  1974年   6篇
  1973年   7篇
  1972年   11篇
  1970年   6篇
排序方式: 共有4151条查询结果,搜索用时 546 毫秒
51.
A sensitive and specific enzyme-linked immunosorbent assay (ELISA) for cholecystokinin octapeptide sulfate (CCK-8S) has been developed using N-terminal specific antibody for CCK-8S. In this assay CCK-8S coupled with poly-L-Glu (CCK-poly-Glu), which is adsorbed on a solid phase, competes with CCK-8S for the binding sites of rabbit anti-CCK antibody, and the complex of the immobilized antibody and CCK-poly-Glu is measured using goat anti-rabbit immunoglobulin G conjugated with horseradish peroxidase. The total time for completion of the assay is less than 24 h. Near 50% bound levels, the intraassay coefficient of variation is 5.2-6.2% and the interassay coefficient of variation is 5.9-8.5%. This assay is sensitive enough to detect 9 pg of CCK-8S, and the data from rat brain regions using this ELISA are very similar to the data from those using radioimmunoassay (RIA). Therefore, this ELISA is simpler and more rapid in comparison with conventional RIA. In the preliminary experiments, we applied this method for determination of CCK content in the brain regions of adult rats treated with 6-hydroxy-dopamine or in newborn rats subjected to anoxia, and showed that this system is applicable to detection of changes of endogenous CCK content.  相似文献   
52.
Immunoblotting analysis was used to identify the microtubule-associated proteins (MAPs) present in cultures of mouse brain neurons. Polyclonal antibodies were raised against the two main adult brain MAPs, i.e., MAP2 (300 kDa) and tau (60-70 kDa). Whatever the stage of the culture, which was performed in a defined medium (3 or 6 days), the anti-MAP2 serum detected several high-molecular-weight components (including MAP2) and an entity with 62-65 kDa. Anti-tau revealed essentially a major peak of 48 kDa (young tau) but also slightly cross-reacted with the 62-65 kDa entity. During the culture period (0-6 days) the cells developed progressively a dense neuritic network; the concentration of the different MAPs increased in parallel but at different rates depending on the different species. The increase in concentration of the high-molecular-weight components occurred before that of 48-kDa tau. This suggests that high-molecular-weight MAPs and 48-kDa tau might be involved respectively in the initiation and elongation of neurites. In contrast, and since the main developmental changes in tau composition seen in vivo did not occur during the time course of the culture, this transition might be related to later events of neuronal differentiation.  相似文献   
53.
Leukotriene C4 Transport and Metabolism in the Central Nervous System   总被引:1,自引:0,他引:1  
The transport and metabolism of radiolabeled leukotriene (LT) C4 in the CNS were investigated after intraventricular injection. Under thiopental (Pentothal) anesthesia, New Zealand white rabbits were injected intracerebroventricularly with 0.2 ml of artificial CSF containing 2.5 microCi of [3H]LTC4 (36 Ci/mmol), 0.3 microCi of [14C]mannitol, and, in some cases, 0.9 mg of probenecid, 1.8 mg of cysteine, 1.4 micrograms of unlabeled LTC4, or 2 mg of tolazoline HCl. After 2 h, the conscious rabbits were killed, and the quantity and nature of the 3H and 14C were determined in CSF, choroid plexus, and brain. The [3H]LTC4 recovered in CSF and brain was not extensively metabolized, as greater than 70% of the 3H remained [3H]LTC4, although some spontaneous conversion to 11-trans-[3H]LTC4 occurred. Oxidized forms of [3H]LTC4, [3H]LTD4, and [3H]LTE4 did not exceed 18% in CSF and brain. After intraventricular injection of [3H]LTC4, 3H was transferred from the CSF to blood by a probenecid-sensitive, but tolazoline-insensitive, transport system in the CNS much more rapidly than mannitol. Cysteine decreased the retention of [3H]LTC4 in brain. These results are consistent with previous in vitro observations that [3H]LTC4 is transferred from CSF into blood by an efficient transport system for LTC4 in choroid plexus.  相似文献   
54.
Early iron deficiency in rat does not affect the weight or the protein, DNA, and RNA content but results in a slight reduction in gamma-aminobutyric acid (GABA) (13%, p less than 0.01) and glutamic acid (20%, p less than 0.001) content of the brain. The activities of the two GABA shunt enzymes, glutamate dehydrogenase and GABA-transaminase, and of the NAD+-linked isocitrate dehydrogenase (ICDH) were inhibited whereas the glutamic acid decarboxylase, mitochondrial NADP+-linked ICDH, and succinic dehydrogenase activities remained unaltered in brain. On rehabilitation with the iron-supplemented diet for 1 week, these decreased enzyme activities in brain attained the corresponding control values. However, the hepatic nonheme iron content increased to about 80% of the control, after rehabilitation for 2 weeks. A prolonged iron deficiency resulting in decreased levels of glutamate and GABA may lead to endocrinological, neurological, and behavioral alterations.  相似文献   
55.
Previous evidence has suggested that brain catecholamine levels are important in the regulation of central angiotensin II receptors. In the present study, the effects of norepinephrine and 3,4-dihydroxyphenylethylamine (dopamine) on angiotensin II receptor regulation in neuronal cultures from rat hypothalamus and brainstem have been examined. Both catecholamines elicit significant decreases in [125I]angiotensin II-specific binding to neuronal cultures prepared from normotensive rats, effects that are dose dependent and that are maximal within 4-8 h of preincubation. Saturation and Scatchard analyses revealed that the norepinephrine-induced decrease in the binding is due to a decrease in the number of angiotensin II receptors in neuronal cultures, with little effect on the receptor affinity. Norepinephrine has no significant actions on [125I]angiotensin II binding in cultures prepared from spontaneously hypertensive rats. The downregulation of angiotensin II receptors by norepinephrine or dopamine is blocked by alpha 1-adrenergic and not by other adrenergic antagonists, a result suggesting that this effect is initiated at the cell surface involving alpha 1-adrenergic receptors. This is further supported by our data indicating a parallel downregulation of specific alpha 1-adrenergic receptors elicited by norepinephrine. In summary, these results show that norepinephrine and dopamine are able to alter the regulation of neuronal angiotensin II receptors by acting at alpha 1-adrenergic receptors, which is a novel finding.  相似文献   
56.
The inhibition of flunitrazepam (FNP) binding to rat brain benzodiazepine (BZ) receptors by methyl beta-carboline-3-carboxylate (MCC) was studied. Biphasic dissociation was observed for [3H]FNP and [3H]MCC in cerebral cortex, cerebellum, and hippocampus, although the dissociation of [3H]MCC was much faster. The dissociation rate of [3H]FNP was increased by MCC in the cerebellum, but was not altered in cerebral cortex or hippocampus. [3H]FNP binding stimulated by gamma-aminobutyric acid was enhanced in the presence of MCC in all three regions examined. These results indicate that MCC exerts these effects by interacting with allosteric sites that are different from the FNP recognition sites on the BZ receptors.  相似文献   
57.
Lipoxygenase Metabolism of Arachidonic Acid in Brain   总被引:14,自引:13,他引:1  
When blood-free mouse brain slices were incubated with exogenous radiolabeled arachidonic acid, gas chromatography/mass spectrometry confirmed that the major radioactive lipoxygenase enzyme product of arachidonic acid was 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE), with lesser amounts of 5-hydroxy-5,6,8,11,14-eicosatetraenoic acid and 15-hydroxy-5,8,11,13-eicosatetraenoic acid. When 12-[2H]HETE was used to measure endogenous 12-HETE in brain tissue frozen with liquid nitrogen, the level of 12-HETE was 41 +/- 6 ng/g of wet weight tissue. This frozen tissue level was not due to the presence of blood. When brain slices were incubated in vitro for 20 min, the 12-HETE level increased to 964 +/- 35 ng/g of wet weight tissue. Elimination of residual intravascular blood before tissue incubation reduced the brain slice 12-HETE concentration by one-half.  相似文献   
58.
Brain cell-free protein synthesis is inhibited by methyl mercury chloride (MeHg) following in vivo or in vitro administration. In this report, we have identified the locus of mercurial inhibition of translation. Intraperitoneal injection of MeHg (40 nmol/g body wt) induced variable inhibition of amino acid incorporation into the post-mitochondrial supernatant (PMS) harvested from the brain of young (10-20-day-old) rats. No mercurial-induced disaggregation of brain polyribosomes nor change in the proportion of 80S monoribosomes was detected on sucrose density gradients. No difference in total RNA was found in the PMS. Initiation complex formation was stimulated by MeHg, as detected by radiolabelled methionine binding to 80S monoribosomes following continuous sucrose density gradient centrifugation. After micrococcal nuclease digestion of endogenous mRNA, both in vivo and in vitro MeHg inhibited polyuridylic acid-directed incorporation of [3H]phenylalanine. However, the in vivo inhibition was no longer observed when [3H]phenylalanyl-tRNAPhe replaced free [3H]phenylalanine in the incorporation assay. The formation of peptidyl[3H]puromycin revealed no difference from controls. There was significant mercurial inhibition of phenylalanyl-tRNA Phe synthetase activity in pH 5 enzyme fractions derived from brain PMS of MeHg-poisoned rats. These experiments revealed that the apparent MeHg inhibition of brain translation in vivo and in vitro is due primarily to perturbation in the aminoacylation of tRNA and is not associated with defective initiation, elongation, or ribosomal function.  相似文献   
59.
Temporal Profiles of Proteins Responsive to Transient Ischemia   总被引:4,自引:3,他引:1  
The responses of long and short half-lived proteins to ischemia were measured in rat brain during 6 days of recovery from 30 min of transient forebrain ischemia produced by four-vessel occlusion. At the end of the ischemic interval, the neocortical activities of four vulnerable enzymes [ornithine (ODC) and S-adenosylmethionine (SAMDC) decarboxylases, and RNA polymerases I and II] were unchanged, but within 30 min of reperfusion, their activities dropped by 25-50%. The loss of substance P in the striatum and substantia nigra was slower, reaching about 50% by 12 h. On the other hand, the activities of 5 long half-lived enzymes did not change in the neocortex at 5 and 15 h of reperfusion and regional protein concentrations were essentially unaffected over 6 days survival. The rate and extent of normalization of the amounts or activities of the vulnerable proteins varied. RNA polymerase II and ODC activities were restored within 4 h, and ODC showed a biphasic increase in activity, with peaks at 10 h and 2-3 days. RNA polymerase I and SAMDC activities were restored by 18 h and 5 days, respectively, whereas substance P concentrations did not completely recover, even at 6-15 days. The greater the regional reduction of blood flow during ischemia, the larger the net change (gain or loss) of SAMDC or ODC activity and the longer the time required to normalize the activities of these enzymes. The average rate of proteolysis, assessed by measuring the rate of clearance of 14C from protein prelabeled with [14C]bicarbonate, was abnormal during the first 2 days of reperfusion. Postischemic changes in both protein synthesis and degradation could affect the amounts of some of the proteins responsive to transient ischemia.  相似文献   
60.
Morphine-Induced Changes in Histamine Dynamics in Mouse Brain   总被引:5,自引:5,他引:0  
The effect of the acute morphine treatment on histamine (HA) pools in the brain and the spinal cord was examined in mice. Morphine (1-50 mg/kg, s.c.) administered alone caused no significant change in the steady-state levels of HA and its major metabolite, tele-methylhistamine (t-MH), in the brain. However, depending on the doses tested, morphine significantly enhanced the pargyline (65 mg/kg, i.p.)-induced accumulation of t-MH and this effect was antagonized by naloxone. A specific inhibitor of histidine decarboxylase, alpha-fluoromethylhistidine (alpha-FMH) (50 mg/kg, i.p.), decreased the brain HA level in consequence of the almost complete depletion of the HA pool with a rapid turnover. Morphine further decreased the brain HA level in alpha-FMH-pretreated mice. Morphine administered alone significantly reduced the HA level in the spinal cord, an area where the turnover of HA is very slow. These results suggest that the acute morphine treatment increases the turnover of neuronal HA via opioid receptors, and this opiate also releases HA from a slowly turning over pool(s).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号