首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5575篇
  免费   191篇
  国内免费   49篇
  2023年   31篇
  2022年   41篇
  2021年   64篇
  2020年   69篇
  2019年   70篇
  2018年   81篇
  2017年   66篇
  2016年   67篇
  2015年   174篇
  2014年   460篇
  2013年   437篇
  2012年   462篇
  2011年   528篇
  2010年   325篇
  2009年   172篇
  2008年   209篇
  2007年   194篇
  2006年   176篇
  2005年   109篇
  2004年   123篇
  2003年   88篇
  2002年   54篇
  2001年   56篇
  2000年   72篇
  1999年   66篇
  1998年   80篇
  1997年   69篇
  1996年   69篇
  1995年   85篇
  1994年   95篇
  1993年   71篇
  1992年   95篇
  1991年   91篇
  1990年   72篇
  1989年   80篇
  1988年   76篇
  1987年   79篇
  1986年   68篇
  1985年   87篇
  1984年   89篇
  1983年   71篇
  1982年   97篇
  1981年   87篇
  1980年   55篇
  1979年   10篇
  1976年   15篇
  1974年   9篇
  1973年   11篇
  1972年   11篇
  1970年   10篇
排序方式: 共有5815条查询结果,搜索用时 15 毫秒
31.
Methanogenium organophilum, a non-autotrophic methanogen able to use primary and secondary alcohols as hydrogen donors, was grown on ethanol. Per mol of methane formed, 2 mol of ethanol were oxidized to acetate. In crude extract, an NADP+-dependent alcohol dehydrogenase (ADH) with a pH optimum of about 10.0 catalyzed a rapid (5 mol/min·mg protein; 22°C) oxidation of ethanol to acetaldehyde; after prolonged incubation also acetate was detectable. With NAD+ only 2% of the activity was observed. F420 was not reduced. The crude extract also contained F420: NADP+ oxidoreductase (0.45 mol/min·mg protein) that was not active at the pH optimum of ADH. With added acetaldehyde no net reduction of various electron acceptors was measured. However, the acetaldehyde was dismutated to ethanol and acetate by the crude extract. The dismutation was stimulated by NADP+. These findings suggested that not only the dehydrogenation of alcohol but also of aldehyde to acid was coupled to NADP+ reduction. If the reaction was started with acetaldehyde, formed NADPH probably reduced excess aldehyde immediately to ethanol and in this way gave rise to the observed dismutation. Acetate thiokinase activity (0.11 mol/min·mg) but no acetate kinase or phosphotransacetylase activity was observed. It is concluded that during growth on ethanol further oxidation of acetaldehyde does not occur via acetylCoA and acetyl phosphate and hence is not associated with substrate level phosphorylation. The possibility exists that oxidation of both ethanol and acetaldehyde is catalyzed by ADH. Isolation of a Methanobacterium-like strain with ethanol showed that the ability to use primary alcohols also occurs in genera other than Methanogenium.Non-standard abbreviations ADH alcohol dehydrogenase - Ap5ALi3 P1,P5-Di(adenosine-5-)pentaphosphate - DTE dithioerythritol (2,3-dihydroxy-1,4-dithiolbutane) - F420 N-(N-l-lactyl--l-glutamyl)-l-glutamic acid phosphodiester of 7,8-dimethyl-8-hydroxy-5-deazariboflavin-5-phosphate - Mg. Methanogenium - OD578 optical density at 578 nm - PIPES 1,4-piperazine-diethanesulfonic acid - TRICINE N-(2-hydroxy-1,1-bis[hydroxymethyl]methyl)-glycine - Tris 2-amino-2-hydroxy-methylpropane-1,3-diol - U unit (mol substrate/min)  相似文献   
32.
Growing cultures of Methanobacterium thermoautotrophicum were supplemented with [U-14C]adenosine or [1-14C]adenosine. 7,8-Didemethyl-8-hydroxy-5-deazariboflavin (factor F0) and 7-methylpterin were isolated from the culture medium. Hydrolysis of cellular RNA yielded purine and pyrimidine nucleotides. The ribose side chain of proffered adenosine is efficiently incorporated into cellular adenosine and guanosine nucleotide pools but not into pyrimidine nucleotides. Thus, M. thermoautotrophicum can utilize exogenous adenosine by direct phosphorylation without hydrolysis of the glycosidic bond, and AMP can be efficiently converted to GMP. Factor F0 and 7-methylpterin had approximately the same specific activities as the purine nucleotides. It follows that the ribityl side chain of factor F0 is derived from the ribose side chain of a nucleotide precursor by reduction. The pyrazine ring of methanopterin is formed by ring expansion involving the ribose side chain of the precursor, GTP.Abbreviations Factor F0 8-hydroxy-6,7-didemethyl-5-deazariboflavin - APRT adenine phosphoribosyltransferase - GPRT guanine phosphoribosyltransferase - PRPP phosphoribosylpyrophosphate - HPLC high performance liquid chromatography  相似文献   
33.
We have isolated RNA from sheep brain synaptosomes and mitochondria separated by an aqueous two-phase system composed of dextran and poly(ethylene glycol). RNA was fractionated through oligo(dT)-cellulose columns and analyzed by electrophoresis through agarose slab gels containing methylmercuric hydroxide and stained with ethidium bromide. The electrophoretic patterns of the poly(A)-containing RNA fraction from synaptosomes and mitochondria are very similar although some high molecular weight RNA species, clearly visible in the synaptosomal fraction, are scarcely detected in the mitochondrial preparations. The electrophoretic analysis of a cleaner RNA preparation from digitonin-treated free mitochondria (mitoplasts) showed that all the poly (A)-RNA species of the synaptosomal preparation are also present in mitoplast. These results strongly suggest that all the discrete poly(A)-RNA species identified in brain synaptosomes are of mitochondrial origin.  相似文献   
34.
The evolution of human speech and syntax, which appear to be the defining characteristics of modern human beings, is discussed. Speech depends on the morphology of the mouth, tongue, and larynx which yield the human «vocal tract», and neural mechanisms that facilitate the perception of speech and make possible the control of the articulatory gestures that underly speech. The neural mechanisms that underly human syntax may have derived by means of the Darwinian process of preadaption from the structures of the brain that first evolved to facilitate speech motor control. Recent data consistent with this theory are presented; deficits in the comprehension of syntax of normal aged people are correlated with a slowdown in speech rate.  相似文献   
35.
Poly(ADP-ribose) polymerase associated with free cytoplasmic messenger ribonucleoprotein particles (free mRNP particles) carrying messenger RNA has been characterized in rat brain. There were first-order kinetics for NAD with an apparent Km for NAD of 90.5 +/- 0.70 microM and Vmax of 19.7 +/- 2.8 pmol ADP-ribose incorporated min-1 mg protein-1. Five poly(ADP-ribose) protein acceptors were identified in the Mr 37,000-120,000 range. It is hypothesized that ADP-ribosylation of specific free mRNP proteins might play a role in the derepression and translation of the silent mRNAs of free mRNP particles.  相似文献   
36.
The in vitro effects of Li on agonist- and depolarization-stimulated accumulation of inositol phosphates were determined in mouse cerebral cortex slices. Of the agents examined, only the cholinergic agonist carbachol produced a significant accumulation of inositol tetrakisphosphate (InsP4) in the absence of Li. Lithium at 5 mM enhanced the accumulation of inositol monophosphate (InsP1) and inositol bisphosphate (InsP2) due to all the stimuli used and potentiated inositol trisphosphate (InsP3) accumulation due to histamine and noradrenaline, although at lower Li concentrations, carbachol-stimulated InsP3 accumulation was reduced. Li also enhanced InsP4 accumulation in the presence of noradrenaline, histamine, and elevated KCl level but, in marked contrast, reduced carbachol-stimulated InsP4 accumulation with an IC50 of 100 microM. There was a significant time delay between the initiation of carbachol stimulation and the beginning of the InsP4 inhibition due to Li. The phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate did not mimic the effects of Li. The results suggest that muscarinic receptor-mediated InsP4 production might be one of the targets for the therapeutic action of Li.  相似文献   
37.
Ingestion of large amounts of ammonium increases markedly the content of tubulin in brain. The effect on tubulin induction of ammonium ingestion for up to 100 days was investigated. Brain tubulin content showed a rapid initial increase (28%) at 2 days and reached 50% after 100 days on the diet. To discern if ammonia, the increase in urea synthesis, or both was responsible for tubulin induction, rats were maintained at several levels of uremia (by administering diets containing 0 to 80% protein) or in hyperammonemia (by urease treatment). Only ammonium administration in the diet and urease injection induced tubulin in brain. Tubulin was quantified in three different brain regions. There was a regional selectivity of tubulin induction by ammonia in rat brain. Whereas the cerebellum remained unaltered, the paleencephalon showed the highest increase, and the cerebral cortex exhibited only a modest increase.  相似文献   
38.
We report the first measurement of the free intracellular calcium level in an actively metabolising intact cerebral tissue preparation. To this end, we applied the recently developed 19F-nuclear magnetic resonance calcium chelator, 5,5'-F2-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA), in superfused cerebral cortical slices to give values for the intracellular Ca2+ concentration of 350 and 480 nM, at external calcium concentrations of 1.2 and 2.4 mM, respectively. Under both conditions, the intracellular Ca2+ concentration was increased by depolarisation using a high external K+ concentration. Interleaved 31P spectra showed that the presence of the 5FBAPTA had a deleterious effect on the metabolic state of the tissue with an external Ca2+ concentration of 1.2 mM, but normal viability was maintained using 2.4 mM.  相似文献   
39.
Brain metabolism and intracellular pH were studied during and after episodes of incomplete cerebral ischaemia in lambs under sodium pentobarbitone anaesthesia. 31P and 1H magnetic resonance spectroscopy was used to monitor brain pHi and brain concentrations of inorganic phosphate (Pi), phosphocreatine (PCr), beta-nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of arterio-cerebral venous concentration differences (AVDs) for oxygen, glucose, and lactate. Cerebral ischaemia was induced by a combination of bilateral carotid clamping and hypotension, and the acute effects of systemic administration of glucose and sodium bicarbonate were examined. The molar ratio of glucose to oxygen uptake by the brain (6G/O2) increased above unity during cerebral ischaemia. Statistically significant AVDs for lactate were not observed. Cerebral ischaemia was associated with a reduction in brain pHi PCr/Pi ratio, and an increase in brain lactate. No effect of arterial plasma glucose on brain lactate concentration or brain pHi was evident during cerebral ischaemia or in the postischaemic period. Administration of sodium bicarbonate systemically in the postischaemic period was associated with a rise in arterial and brain tissue PCO2. A fall in brain pHi occurred which was attributable in part to coincidental brain lactate accumulation. The increase in brain lactate measured by 1H nuclear magnetic resonance in vivo during ischaemia was insufficient to account for the change in buffer base calculated to have occurred from previous estimates of brain buffering capacity.  相似文献   
40.
Distribution of the Glucose-1,6-Bisphosphate System in Brain and Retina   总被引:2,自引:2,他引:0  
The distribution of glucose-1,6-bisphosphate (G16P2) synthase was measured in more than 70 regions of mouse brain, and nine layers of monkey retina. Activities in gray areas varied as much as 10-fold, in a hierarchical manner, from highest in telencephalon, especially the limbic system, to lowest in cerebellum, medulla, and spinal cord. The synthase levels were significantly correlated among different regions with G16P2 itself, as well as with previously published levels of a brain specific IMP-dependent G16P2 phosphatase. In contrast, neither G16P2 nor either its synthase or phosphatase correlated positively with phosphoglucomutase, and in all regions the G16P2 levels greatly exceeded requirements for activation of this mutase. This strengthens the view that G16P2 has some function besides serving as coenzyme for phosphoglucomutase. However, attempts to correlate the "G16P2 system," as defined by the three coordinately related elements, synthase, phosphatase, and G16P2, with other enzymes of carbohydrate metabolism, or with regional data of Sokoloff et al. [J. Neurochem. 28, 897-916 (1977)] for glucose consumption, were unsuccessful. This leaves open the possibility that brain G16P2 might serve as a phosphate donor for specific nonmetabolic effector proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号