首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   5篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   7篇
  2010年   1篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   9篇
  2005年   6篇
  2004年   11篇
  2003年   7篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   10篇
  1994年   5篇
  1993年   6篇
  1992年   11篇
  1991年   9篇
  1990年   8篇
  1989年   7篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1972年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
81.
82.
Bradykinin is produced in response to inflammation, trauma, burns, shock, allergy and some cardiovascular diseases. Actions of this peptide are mediated through two different G-protein coupled receptors, named B1 and B2 that have different pharmacological characteristics. The former is up-regulated during inflammation episodes or tissue trauma whereas, the latter is constitutively expressed in a variety of cell types. In a previous work we have characterized the molecular features that explain the observed structure-activity results for both receptors by means of molecular modeling studies, using diverse ligands for both receptors. These results were summarized in the form of two different pharmacophores that provided new insights to be used for the design of novel molecules with antagonistic profile. In the present work, we compare these pharmacophores to understand the features that characterize ligand selectivity to the two bradykinin receptors. The study shows that most of the residues involved in the binding pocket are similar in both receptors and consequently are the pharmacophores obtained. The main difference between the two pharmacophores remains on point #5 that involves a polar moiety for the B1 receptor and an aromatic ring for the B2 receptor. Accordingly, analysis of the prospective bound conformation of several non-selective small molecule ligands of the bradykinin receptors permits to conclude that fulfilment of point#5 is a requirement to produce selective ligands. However, the study also shows that this is a necessary condition only, since ligands need also to be bulky enough to avoid binding to these receptors in diverse poses. These results provide new insights for a better understanding of the molecular features that ligands are required to exhibit to be selective bradykinin ligands.  相似文献   
83.
The present study purifies two T. serrulatus non-disulfide-bridged peptides (NDBPs), named venom peptides 7.2 (RLRSKG) and 8 (KIWRS) and details their synthesis and biological activity, comparing to the synthetic venom peptide 7.1 (RLRSKGKK), previously identified. The synthetic replicate peptides were subjected to a range of biological assays: hemolytic, antifungal, antiviral, electrophysiological, immunological and angiotensin-converting enzyme (ACE) inhibition activities. All venom peptides neither showed to be cytolytic nor demonstrated significant antifungal or antiviral activities. Interestingly, peptides were able to modulate macrophages’ responses, increasing IL-6 production. The three venom peptides also demonstrated potential to inhibit ACE in the following order: 7.2 > 7.1 > 8. The ACE inhibition activity was unexpected, since peptides that display this function are usually proline-rich peptides. In attempt to understand the origin of such small peptides, we discovered that the isolated peptides 7.2 and 8 are fragments of the same molecule, named Pape peptide precursor. Furthermore, the study discusses that Pape fragments could be originated from a post-splitting mechanism resulting from metalloserrulases and other proteinases cleavage, which can be seen as a clever mechanism used by the scorpion to enlarge its repertoire of venom components. Scorpion venom remains as an interesting source of bioactive proteins and this study advances our knowledge about three NDBPs and their biological activities.  相似文献   
84.
The world is currently facing a frightening coronavirus disease-2019 (COVID-19) epidemic. Severity of COVID-19 presentation is highly variable among infected individuals with increasingly recognized risk factors. Although observational studies suggested lower COVID-19 severity in populations consuming fermented foods, no controlled study investigated the role of diet. Yogurt, a fermented dairy product, exhibits interesting properties related to the presence of bioactive peptides and probiotics that may play a beneficial role in COVID-19 presentation and outcome. Peptides contained in yogurt are responsible for angiotensin-converting enzyme-inhibitory, bradykinin potentiating, antiviral, anti-inflammatory, antithrombotic, and antioxidant effects. The types and activity of these peptides vary widely depending on their amino acid sequence, on the probiotics used in yogurt production and on intestinal digestion. Additionally, probiotics used in yogurt exhibit direct angiotensin-converting enzyme-inhibitory, antiviral and immune boosting activities. Since COVID-19 pathogenesis involves angiotensin II accumulation and bradykinin deficiency, yogurt bioactive peptides appear as potentially beneficial. Therefore, epidemiological investigations and randomized controlled clinical trials to evaluate the exact role of yogurt consumption on COVID-19 manifestations and outcome should be encouraged.  相似文献   
85.
Abstract

The present investigation describes the comparative properties, particularly the substrate specificity of three kallikrein-like serine proteinases (I, II and III) purified from rat submandibular gland extract (Bedi, G.S., Prep. Biochem. 22, 67–81. 1992). The physico-chemical and immunological properties of three proteinases were compared by Western blot analysis, immunodiffusion, immuno-electrophoresis, amino terminal sequence analysis, molecular weight determination and isoelectric focusing. Detailed substrate specificity of these proteinases was determined using chromogenic substrates, synthetic peptides and native proteins. The chromogenic substrate tosyl-gly-pro-arg-pNA was hydrolyzed preferentially by Proteinase I. The replacement of pro at the P2 position with bulky hydrophobic residues phe and leu completely abolished the hydrolysis by Proteinase I. The hydrolysis of the chromogenic substrates by Proteinase II was also affected by the amino acid residue present at the P2 position in the order of pro>gly>val>leu>phe. Neither Proteinase I nor Proteinase II hydrolyzed substrates in which arg was replaced with lys at the P1 position. Proteinase III was reactive against all the chromogenic substrates with arg or lys at the P1 position. Synthetic polypeptides T-kinin-leu and insulin B chain were resistant to cleavage by both Proteinase I and II and were cleaved specifically at arg-X peptide bond by Proteinase III. Tonin-like activity of Proteinase II was confirmed by cleavage of the angiotensin 1–14 at phe-his linkage to generate two fragments DRVYIHPF and HLLVYS respectively. All three proteinases cleaved human high molecular weight kininogen but only Proteinase III could cleave T-kininogen. Proteinase III was also reactive towards human and bovine fibronectin, fibrinogen and gelatin. Several other salivary and serum proteins were resistant to cleavage by these proteinases. Although the three enzymes are immunologically related, they differ with respect to size, isoelectric point, amino terminal sequence and inhibition profile.  相似文献   
86.
Anderson WG  Leprince J  Conlon JM 《Peptides》2008,29(8):1280-1286
A bradykinin (BK)-related peptide was isolated from heat-denaturated plasma from an elasmobranch fish, the little skate, Leucoraja erinacea after incubation with porcine pancreatic kallikrein. The primary structure of the peptide (H-Gly-Ile-Thr-Ser-Trp-Leu-Pro-Phe-OH; skate BK) shows limited structural similarity to the mammalian B1 receptor agonist, des-Arg(9)-BK. The myotropic activities of synthetic skate BK, and the analog skate [Arg(9)]BK, were examined in isolated skate vascular and intestinal smooth muscle preparations. Skate BK produced a concentration-dependent constriction of the mesenteric artery (EC(50)=4.37x10(-8)M; maximum response=103.4+/-10.23% of the response to 60mM KCl) but the response to skate [Arg(9)]BK was appreciably weaker (response to 10(-6)M=73.0+/-23.4% of the response to 60mM KCl). Neither the first branchial gill arch nor the ventral aorta responded to either purified peptide. Skate BK also produced a concentration-dependent constriction of intestinal smooth muscle preparations (EC(50)=2.74x10(-7)M; maximum response 31.0+/-12.2% of the response to 10(-5)M acetylcholine). Skate [Arg(9)]BK was without effect on the intestinal preparation. The data provide evidence for the existence of the kallikrein-kinin system in a phylogenetically ancient vertebrate group and the greater potency of skate BK compared with the analog skate [Arg(9)]BK suggests that the receptor mediating vascular responses resembles the mammalian B1 receptor more closely than the B2 receptor.  相似文献   
87.
Membrane-bound aminopeptidase P (mAPP) is a highly specific exopeptidase that removes the N-terminal amino acid only from a peptide (three amino acids or longer) that has a prolyl residue in the second position. mAPP can inactivate bradykinin, a potent vasodilating and cardioprotective peptide hormone, by hydrolyzing the Arg(1)-Pro(2) bond. Studies on the rat have shown that the metabolism of bradykinin is an important physiological role of this enzyme. We report here the complete coding sequences for rat and mouse mAPP determined from mRNA isolated from lung tissue. Key structural features that determine post-translational processing and substrate recognition and catalysis were identified based on sequence homologies and the crystal structure of Escherichia coli aminopeptidase P complexed with Pro-Leu. The tissue-specific expression of mAPP was studied using the polymerase chain reaction. The mAPP gene is widely, but variably, expressed in adult tissues of the rat and mouse and in mouse embryos.  相似文献   
88.
A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.  相似文献   
89.
Abstract: The human neuroblastoma cell line SH-SY5Y, maintained at confluence for 14 days, released [3H]-noradrenaline ([3H]NA) when stimulated with either the muscarinic receptor agonist methacholine or bradykinin. The major fraction of release was rapid, occurring in <10 s, whereas nicotine-evoked release was slower. When the extracellular [Ca2+] ([Ca2+]e) was buffered to ~50–100 nM, release evoked by nicotine was abolished, whereas that in response to methacholine or bradykinin was reduced by ~50% with EC50 values of ?5.46 ± 0.05 M and ?7.46 ± 0.06 M (log10), respectively. Methacholine and bradykinin also produced rapid elevations of both inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and intracellular free [Ca2+] ([Ca2+]i). These elevations were reduced at low [Ca2+]e and under these conditions the EC50 values for peak elevation of [Ca2+]i were ?6.00 ± 0.14 M for methacholine and ?7.95 ± 0.34 M for bradykinin (n = 3 for all EC50 determinations). At low [Ca2+]e, depletion of nonmitochondrial intracellular Ca2+ stores with the Ca2+-ATPase inhibitor thapsigargin produced a transient small elevation of [Ca2+]i and a minor release of [3H]NA. At low [Ca2+]e, thapsigargin abolished elevation of [Ca2+]i in response to methacholine and bradykinin and completely inhibited their stimulation of [3H]NA release. It is proposed, therefore, that Ca2+ release from Ins(1,4,5)P3-sensitive stores is a major trigger of methacholine- and bradykinin-evoked [3H]NA release in SH-SY5Y cells.  相似文献   
90.
Objectives of this study were to determine if aerosolized bradykinin causes bronchoconstriction in anesthetized, mechanically ventilated rats, and if pretreatment with enalaprilat, an inhibitor of angiotensin-converting enzyme (ACE), or phosphoramidon, an inhibitor of endopeptidase 24.11 (EP 24.11), alters the response. We found that aerosolized bradykinin elicited a reproducible bronchoconstrictor response that was significantly amplified by pretreatment with aerosolized enalaprilat or phosphoramidon. Neither inhibitor alone affected airway tone or caused nonspecific airway hyperreactivity. These findings indicate that both ACE and EP 24.11 contribute to bradykinin degradation in rat airways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号