首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   5篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   7篇
  2010年   1篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   9篇
  2005年   6篇
  2004年   11篇
  2003年   7篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   10篇
  1994年   5篇
  1993年   6篇
  1992年   11篇
  1991年   9篇
  1990年   8篇
  1989年   7篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1972年   1篇
排序方式: 共有184条查询结果,搜索用时 31 毫秒
61.
Abstract: A B2 bradykinin (BK) receptor was solubilised and partially purified from rat uterine membranes by a combination of ammonium sulphate precipitation, desalting on Sephadex G-50, and hydroxyapatite and wheat germ agglutinin affinity chromatography. The partially purified BK receptor, enriched 1,500-fold, was then cross-linked to 125l-Tyr0-BK using disuccinimidyl suberate and purified to homogeneity as a single protein species on two-dimensional gel electrophoresis with a molecular mass of 81 kDa. This molecular size was in agreement with the value of 80–120 kDa estimated from Sephacryl 300 size exclusion column chromatography of the B2 receptor. The partially purified and the crude solubilised B2 BK receptor from rat uterus showed similar affinities for BK and the BK analogues iodo-Tyr0-BK, D-Phe7-BK, and des-Arg9-BK, indicating that the ligand binding specificity of the receptor had been retained during the purification procedures. The biochemical properties of the solubilised B2 BK receptor correspond to those of a hydrophobic acidic glycoprotein (isoelectric focusing gave a value of 4.5–4.7) that binds specifically to wheat germ agglutinin but has no affinity for either concanavalin A or lentil lectin, suggesting the absence of terminal mannose or glucose residues.  相似文献   
62.
The diffusion of electrically charged peptides (angiotensin II, bradykinin and [Suc1]angiotensin II) across tight cellophane membranes, obtained by different degrees of acetylation, shows a kinetic behaviour which was interpreted in the literature as indicative of the existence of different molecular conformations presenting slow interconversion velocities and different permeabilities across the membrane. A diffusion potential (Δψ) was found to be present across the membrane along diffusion experiments performed in low ionic strength. Upon annihilation of δψ by chemical voltage clamping (by equally increasing the ionic strength on both bathing solutions) the diffusion rate was decreased and the flow followed first order kinetics, indicating a major role of Δψ in the process. As the ionic strength increase could also affect molecular conformation, the role of Δψ on the diffusion of those molecules was tested by fitting flux and Δψ experimental results by an integrated form of Nernst-Planck flux equation. It is concluded that the deviation from first order diffusion kinetics, observed in low ionic strength, is solely due to the diffusion potential, and not to the existence of more than one molecular conformation in aqueous solution. This study was extended to amino acids and other related charged molecules.  相似文献   
63.
We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.  相似文献   
64.
Hypozincemia is prevalent in severe acute respiratory syndrome coronavirus-2 (SARS-COV-2)-infected patients and has been considered as a risk factor in severe coronavirus disease-2019 (COVID-19). Whereas zinc might affect SARS-COV-2 replication and cell entry, the link between zinc deficiency and COVID-19 severity could also be attributed to the effects of COVID-19 on the body metabolism and immune response. Zinc deficiency is more prevalent in the elderly and patients with underlying chronic diseases, with established deleterious consequences such as the increased risk of respiratory infection. We reviewed the expected effects of zinc deficiency on COVID-19-related pathophysiological mechanisms focusing on both the renin–angiotensin and kinin-kallikrein systems. Mechanisms and effects were extrapolated from the available scientific literature. Zinc deficiency alters angiotensin-converting enzyme-2 (ACE2) function, leading to the accumulation of angiotensin II, des-Arg9-bradykinin and Lys-des-Arg9-bradykinin, which results in an exaggerated pro-inflammatory response, vasoconstriction and pro-thrombotic effects. Additionally, zinc deficiency blocks the activation of the plasma contact system, a protease cascade initiated by factor VII activation. Suggested mechanisms include the inhibition of Factor XII activation and limitation of high-molecular-weight kininogen, prekallikrein and Factor XII to bind to endothelial cells. The subsequent accumulation of Factor XII and deficiency in bradykinin are responsible for increased production of inflammatory mediators and marked hypercoagulability, as typically observed in COVID-19 patients. To conclude, zinc deficiency may affect both the renin–angiotensin and kinin-kallikrein systems, leading to the exaggerated inflammatory manifestations characteristic of severe COVID-19.  相似文献   
65.
β-Arrestins are signaling adaptors that bind to agonist-occupied G protein-coupled receptors (GPCRs) and target them for endocytosis; however, the mechanisms regulating receptor/β-arrestin complexes and trafficking in endosomes, remain ill defined. Here we show, in live cells, differential dynamic regulation of endosomal bradykinin B2 receptor (B2R) complexes with either β-arrestin-1 or -2. We find a novel role for MAPK in the B2R/β-arrestin-2 complex formation, receptor trafficking and signaling mediated by an ERK1/2 regulatory motif in the hinge domain of the rat β-arrestin-2 (PET178P), but not rat β-arrestin-1 (PER177P). While the ERK1/2 regulatory motif is conserved between rat and mouse β-arrestin-2, it is surprisingly not conserved in human β-arrestin-2 (PEK178P). However, mutation of lysine 178 to threonine is sufficient to confer MAPK sensitivity to the human β-arrestin-2. Furthermore, substitution for a phosphomimetic residue in both the rat and the human β-arrestin-2 (T/K178D) significantly stabilizes B2R/β-arrestin complexes in endosomes, delays receptor recycling to the plasma membrane and maintains intracellular MAPK signaling. Similarly, the endosomal trafficking of β2-adrenergic, angiotensin II type 1 and vasopressin V2 receptors was altered by the β-arrestin-2 T178D mutant. Our findings unveil a novel subtype specific mode of MAPK-dependent regulation of β-arrestins in intracellular trafficking and signaling of GPCRs, and suggest differential endosomal receptor/β-arrestin-2 signaling roles among species.  相似文献   
66.
Arg-Pro-Pro-Gly-Phe (RPPGF, BK[1–5]), is a stable metabolite of the peptide hormone bradykinin. Considering the short half-life of bradykinin (BK, 15 secs), RPPGF has been used as a marker for BK’s endogenous generation. A lack of a radioiodinated RPPGF has precluded the development of a radioimmunoassay for this peptide. The present study describes a two-step reaction that allows for the incorporation of 125I into the aromatic ring of the phenylalanine of RPPGF. This radioiodinated analog is recognized by an antibody to RPPGF, demonstrating its utility for the development of a radioimmunoassay for measurements of RPPGF, a stable metabolic product of bradykinin.  相似文献   
67.
Enhancement of a ligand's interaction with a receptor through presenting the ligand in multimeric form is a topic of general interest. Thus dimerization of single-chain bradykinin antagonist peptides has previously been shown to be beneficial in terms of potency and duration of action. While crosslinking polypeptides at terminal positions using suitable dicarboxylic acids and diamines is comparatively straightforward synthetically, internal dimerizations are usually achieved through oxidation or double S-alkylations of cysteine residues, resulting in metabolically unfavourable disulphide and thioether cross-links. Using suitably modified standard solid-phase peptide synthesis protocols, dimeric bradykinin antagonist peptides [H-(d -Arg)-Arg-Pro-Hyp-Gly-Phe]2-X-[(d -Phe)-Leu-Arg-OH]2 were synthesized where X corresponds to a l ,l -2,7-diaminosuberic or l ,l -2,9-diaminosebacic acid residue, respectively. The biological activity of these peptides was comparable to that of conventional dimeric bradykinin antagonists cross-linked through cystine or bis(succinimido)alkyl bridges. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
68.
Phosphoglucose isomerase (PGI) with a novel lysyl aminopeptidase (LysAP) activity was recently isolated and partially characterized from the human pathogen, Vibrio vulnificus. This PGI is a heterodimer consisting of 60.8- and 23.4-kDa subunits, which together provide LysAP activity. The present study further characterizes the complex structure and functions of Vibrio PGI and draws parallels with rabbit and human PGI. A Proscan search of Vibrio PGI revealed 194 different structural motifs of which 124 and 127 were also found in rabbit and human PGI, respectively. Vibrio PGI contains motifs for the serine, histidine and aspartic acid active sites of the subtilase family of serine proteases which form a putative catalytic triad consisting of His534 and Ser159 on the 60.8-kDa subunit and Asp53 on the 23.4-kDa subunit. Together, they form one LysAP site for each heterodimer. Each active site motif is overlapped by motifs for EF-hand calcium binding domains. The LysAP activity was inhibited by the addition of ≥10 μM Ca2+, suggesting that the EF-hand calcium-binding domain may be a natural regulatory region for LysAP activity. In contrast, PGI's isomerase activity was enhanced at Ca2+ concentrations >100 μM. PGI-LysAP cleaved the amino-terminal lysyl residue from des-Arg10-kallidin producing des-Arg9-bradykinin; therefore, Vibrio PGI-LysAP may serve as a virulence factor to enhance Vibrio invasiveness. Together, these data provide a framework to account for PGI's LysAP activity and further demonstrate the structural complexity and functional importance of this molecule.  相似文献   
69.
A nontoxic peptide with bradykinin-potentiating activity was isolated from the dialyzed venom of the scorpion Buthus occitanus by reverse-phase high performance liquid chromatography (RP-HPLC). The pharmacological activity of the peptide was bioassayed by its ability to potentiate added bradykinin (BK) on the isolated guinea pig ileum as well as the isolated rat uterus for contraction. Moreover, the peptide potentiates in vivo the depressor effect of BK on arterial blood pressure in the normotensive anesthetized rat. Chemical characterization of the peptide was also performed. The amino acid composition of the peptide showed 21 amino acid residues per molecule including three proline residues. The amino acid sequence of the purified peptide was confirmed by mass spectrometry. Either N- or C-terminal ends were free. The sequence does not show a homology with bradykinin-potentiating peptides isolated from either scorpion or snake venoms. Furthermore, we did not find a significant sequence homology between the sequence of the isolated peptide and any of proteins or peptides in GenPro or NBRF data banks. The peptide also inhibited angiotensin-converting enzyme (ACE), and could not serve as substrate for the enzyme. It could be concluded that the mechanism of bradykinin-potentiating peptide (BPP) activity may be due to ACE inhibition.  相似文献   
70.
Single cell Ca2+ mobilization was studied by nonparametric, quantitative flow cytometry using a sort-selected subclone of PC-12 cells. The response of the parent PC-12 population to bradykinin (BK) was very heterogeneous and of a relatively low magnitude. Cells that exhibited maximal Ca2+ mobilization were singly sorted by flow cytometry, cultured, and reanalyzed. In one subclone, referred to as BK1, BK or the B2-BK receptor agonists Lys-BK and Met-Lys-BK (10 pM-1 microM) induced robust Ca2+ transients in 80% of the cells. All three peptides produced the same maximal responses. The B1-BK receptor agonist Des-Arg9-BK (1 nM-1 microM) failed to elicit Ca2+ mobilization in these cells. The responses to BK (10 and 100 nM) were inhibited by preincubation with the B2-receptor antagonists D-Arg0-Hyp3-thienyl5,8-D-Phe7-BK and D-Arg0-Hyp3-D-Phe7 (0.1 nM-10 microM) in a concentration-dependent manner. Des-Arg9-Leu8-BK, a B1-receptor antagonist, failed to block the BK responses at 0.1-10 microM. The agonist/antagonist profile of the BK responses indicated that the B2-BK receptor mediated the Ca2+ response in the BK1 subclone. Thus, flow cytometric analysis of a receptor-mediated Ca2+ response can be employed to select a homogeneously responsive subclone from a heterogeneous, clonal population that can improve the resolution of receptor-mediated second messenger generation at the single cell level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号