首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2313篇
  免费   98篇
  国内免费   167篇
  2023年   17篇
  2022年   19篇
  2021年   29篇
  2020年   31篇
  2019年   48篇
  2018年   39篇
  2017年   39篇
  2016年   38篇
  2015年   56篇
  2014年   96篇
  2013年   138篇
  2012年   50篇
  2011年   69篇
  2010年   74篇
  2009年   125篇
  2008年   114篇
  2007年   137篇
  2006年   117篇
  2005年   141篇
  2004年   122篇
  2003年   99篇
  2002年   80篇
  2001年   68篇
  2000年   72篇
  1999年   83篇
  1998年   47篇
  1997年   55篇
  1996年   41篇
  1995年   52篇
  1994年   62篇
  1993年   49篇
  1992年   43篇
  1991年   37篇
  1990年   38篇
  1989年   39篇
  1988年   33篇
  1987年   31篇
  1986年   21篇
  1985年   26篇
  1984年   25篇
  1983年   15篇
  1982年   17篇
  1981年   16篇
  1980年   3篇
  1979年   12篇
  1978年   11篇
  1977年   1篇
  1976年   3篇
排序方式: 共有2578条查询结果,搜索用时 406 毫秒
71.
72.
Despite recent progress in the molecular characterization of high-conductance Ca2+-activated K+ (maxi-K) channels, the molecular identities of intermediate conductance Ca2+-activated K+ channels, including that of mature erythrocytes, remains unknown. We have used various peptide toxins to characterize the intermediate conductance Ca2+-activated K+ channels (Gardos pathway) of human and rabbit red cells. With studies on K+ transport and on binding of 125I-charybdotoxin (ChTX) and 125I-kaliotoxin (KTX) binding in red cells, we provide evidence for the distinct nature of the red cell Gardos channel among described Ca2+-activated K+ channels based on (i) the characteristic inhibition and binding patterns produced by ChTX analogues, iberiotoxin (IbTX) and IbTX-like ChTX mutants, and KTX (1–37 and 1–38 variants); (ii) the presence of some properties heretofore attributed only to voltage-gated channels, including inhibition of K transport by margatoxin (MgTX) and by stichodactyla toxin (StK); (iii) and the ability of scyllatoxin (ScyTX) and apamin to displace bound 125I-charybdotoxin, a novel property for K+ channels. These unusual pharmacological characteristics suggest a unique structure for the red cell Gardos channel.We thank Dr. Chris Miller of Brandeis University for generously providing recombinant ChTX mutants, Dr. Maria Garcia of Merck Research Laboratories for MgTX and Dr. Regine Romi of Laboratoire d'Ingenierie des Proteines (Marseille, France) for synthetic KTX,1–37 and KTX,1–38. This research was supported by grant HL-15157 from the National Institutes of Health.  相似文献   
73.
Two closely related bacterial toxins, heat-labile enterotoxin (LT-I) and cholera toxin (CT), not only invoke a toxic activity that affects many victims worldwide but also contain a beneficial mucosal adjuvant activity that significantly enhances the potency of vaccines in general. For the purpose of vaccine design it is most interesting that the undesirable toxic activity of these toxins can be eliminated by the single-site mutation Ser63Lys in the A subunit while the mucosal adjuvant activity is still present. The crystal structure of the Ser63Lys mutant of LT-I is determined at 2.0 A resolution. Its structure appears to be essentially the same as the wild-type LT-I structure. The substitution Ser63Lys was designed, based on the wild-type LT-I crystal structure, to decrease toxicity by interfering with NAD binding and/or catalysis. In the mutant crystal structure, the newly introduced lysine side chain is indeed positioned such that it could potentially obstruct the productive binding mode of the substrate NAD while at the same time its positive charge could possibly interfere with the critical function of nearby charged groups in the active site of LT-I. The fact that the Ser63Lys mutant of LT-I does not disrupt the wild-type LT-I structure makes the non-toxic mutant potentially suitable, from a structural point of view, to be used as a vaccine to prevent enterotoxigenic E. coli infections. The structural similarity of mutant and wild-type toxin might also be the reason why the inactive Ser63Lys variant retains its adjuvant activity.  相似文献   
74.
Structural studies of receptor binding by cholera toxin mutants.   总被引:1,自引:0,他引:1       下载免费PDF全文
The wide range of receptor binding affinities reported to result from mutations at residue Gly 33 of the cholera toxin B-pentamer (CTB) has been most puzzling. For instance, introduction of an aspartate at this position abolishes receptor binding, whereas substitution by arginine retains receptor affinity despite the larger side chain. We now report the structure determination and 2.3-A refinement of the CTB mutant Gly 33-->Arg complexed with the GM1 oligosaccharide, as well as the 2.2-A refinement of a Gly 33-->Asp mutant of the closely related Escherichia coli heat-labile enterotoxin B-pentamer (LTB). Two of the five receptor binding sites in the Gly 33-->Arg CTB mutant are occupied by bound GM1 oligosaccharide; two other sites are involved in a reciprocal toxin:toxin interaction; one site is unoccupied. We further report a higher resolution (2.0 A) determination and refinement of the wild-type CTB:GM1 oligosaccharide complex in which all five oligosaccharides are seen to be bound in essentially identical conformations. Saccharide conformation and binding interactions are very similar in both the CTB wild-type and Gly 33-->Arg mutant complexes. The protein conformation observed for the binding-deficient Gly 33-->Asp mutant of LTB does not differ substantially from that seen in the toxin:saccharide complexes. The critical nature of the side chain of residue 33 is apparently due to a limited range of subtle rearrangements available to both the toxin and the saccharide to accommodate receptor binding. The intermolecular interactions seen in the CTB (Gly 33-->Arg) complex with oligosaccharide suggest that the affinity of this mutant for the receptor is close to the self-affinity corresponding to the toxin:toxin binding interaction that has now been observed in crystal structures of three CTB mutants.  相似文献   
75.
76.
A new system was designed to detect staphylococcal exfoliative toxin A (ETA) and B (ETB) genes by the polymerase chain reaction (PCR). The primer pairs for the ETA gene (eta) were 20 and 20-mer, and its PCR product was a 741-bp eta fragment, while the primer pairs for the ETB gene (etb) were also 20 and 20-mer, and its PCR product was a 629-bp etb fragment. When these primers were simultaneously used in the PCR, the two types of ET were clearly detected as two bands in an ETA and ETB double-producer using only one colony within 3 hr. We examined 66 strains of Staphylococcus aureus isolated from patients with staphylococcal scalded skin syndrome (SSSS) and compared the results obtained by ELISA and PCR. The same results were obtained for 56 of the strains, i.e., 30 strains were ETA producers, 20 strains were ETB producers, and 6 strains were double-producers. However, positive results were obtained for 5 of the 10 non-ET-producing strains. Two of these strains were judged by PCR as ETA producers and three as ETB producers. Thus, PCR is very sensitive and rapid in detecting ETA and ETB gene fragments in colonies isolated from patients with SSSS.  相似文献   
77.
TheSaccharomyces cerevisiae killer toxin K1 is a secreted α/β-heterodimeric protein toxin that kills sensitive yeast cells in a receptor-mediated two-stage process. The first step involves toxin binding to β-1,6-d-glucan-components of the outer yeast cell surface; this step is blocked in yeast mutants bearing nuclear mutations in any of theKRE genes whose products are involved in synthesis and/or assembly of cell wall β-d-glucans. After binding to the yeast cell wall, the killer toxin is transferred to the cytoplasmic membrane, subsequently leading to cell death by forming lethal ion channels. In an attempt to identify a secondary K1 toxin receptor at the plasma membrane level, we mutagenized sensitive yeast strains and isolated killer-resistant (kre) mutants that were resistant as spheroplasts. Classical yeast genetics and successive back-crossings to sensitive wild-type strain indicated that this toxin resistance is due to mutation(s) in a single chromosomal yeast gene (KRE12), renderingkrel2 mutants incapable of binding significant amounts of toxin to the membrane. Sincekrel2 mutants showed normal toxin binding to the cell wall, but markedly reduced membrane binding, we isolated and purified cytoplasmic membranes from akrel2 mutant and from an isogenicKre12+ strain and analyzed the membrane protein patterns by 2D-electrophoresis using a combination of isoelectric focusing and SDS-PAGE. Using this technique, three different proteins (or subunits of a single multimeric protein) were identified that were present in much lower amounts in thekre12 mutant. A model for K1 killer toxin action is presented in which the gene product ofKRE12 functions in vivo as a K1 docking protein, facilitating toxin binding to the membrane and subsequent ion channel formation.  相似文献   
78.
The structure of the potassium channel blocker agitoxin 2 was solved by solution NMR methods. The structure consists of a triple-stranded antiparallel beta-sheet and a single helix covering one face of the beta-sheet. The cysteine side chains connecting the beta-sheet and the helix form the core of the molecule. One edge of the beta-sheet and the adjacent face of the helix form the interface with the Shaker K+ channel. The fold of agitoxin is homologous to the previously determined folds of scorpion venom toxins. However, agitoxin 2 differs significantly from the other channel blockers in the specificity of its interactions. This study was thus focused on a precise characterization of the surface residues at the face of the protein interacting with the Shaker K+ channel. The rigid toxin molecule can be used to estimate dimensions of the potassium channel. Surface-exposed residues, Arg24, Lys27, and Arg31 of the beta-sheet, have been identified from mutagenesis studies as functionally important for blocking the Shaker K+ channel. The sequential and spatial locations of Arg24 and Arg31 are not conserved among the homologous toxins. Knowledge on the details of the channel-binding sites of agitoxin 2 formed a basis for site-directed mutagenesis studies of the toxin and the K+ channel sequences. Observed interactions between mutated toxin and channel are being used to elucidate the channel structure and mechanisms of channel-toxin interactions.  相似文献   
79.
Nucleotide sequence comparisons of the heat-labile enterotoxin (LTh) genes of E. coli pathogenic for humans with cholera toxin (CT) genes suggest that the two toxin genes have evolved from a common ancestry by a series of single base changes, while conserving the catalytic fragment A1 (ADP-ribose transferase). Based on the local hydrophilicity profiles of LTh and CT peptides, a transmembrane segment appears to be present in A1 in both toxins.  相似文献   
80.
The125I-labeled fragment C of tetanus toxin was found to bind specifically to the gangliosides GD1b, GT1b, and GQ1b when applied to thin-layer chromatograms on which a mixture of gangliosides had been resolved. As little as 2.5 pmoles of these gangliosides could be detected by this method. In addition to factors determined by the sample, namely the amount and species of gangliosides present, optimal binding of the125I-labeled fragment C also depended upon the iodination procedure used to generate the probe, the toxin concentration, and the concentration, buffer type, pH, and ionic strength of the binding solution. This new technique was shown to be a sensitive method for the detection and identification of specific gangliosides originating from extraneural or neural cells.Nomenclature: The gangliosides follow the nomenclature system of Svennerholm [Eur J Biochem (1977) 79:11–21] GM3 II3NeuAc-LacCer - GD3 II3(NeuAc)2-LacCer - GM1 II3NeuAc-GgOse4Cer - GD1a IV3NeuAc, II3NeuAc-GgOse4Cer - GD1b II3(NeuAc)2-GgOse4Cer - GT1b IV3NeuAc, II3(NeuAc)2-GgOse4Cer - GQ1b IV3(Neu-Ac)2, II3(NeuAc)2-GgOse4Cer - GP1b IV3(NeuAc)3, II3(NeuAc)2-GgOse4Cer  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号