首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   26篇
  国内免费   19篇
  2024年   1篇
  2023年   11篇
  2022年   7篇
  2021年   18篇
  2020年   18篇
  2019年   21篇
  2018年   31篇
  2017年   11篇
  2016年   15篇
  2015年   15篇
  2014年   24篇
  2013年   24篇
  2012年   7篇
  2011年   14篇
  2010年   19篇
  2009年   10篇
  2008年   12篇
  2007年   24篇
  2006年   13篇
  2005年   14篇
  2004年   11篇
  2003年   10篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   7篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有398条查询结果,搜索用时 15 毫秒
41.
Adiponectin, one of adipokines that is secreted from adipocytes, plays an important role in the regulation of glucose and lipid metabolism. Paradoxically, serum concentrations of adiponectin are decreased in obese and type 2 diabetic patients, although it is produced in adipose tissue. On the other hand, plasma TNF-alpha levels are increased in such subjects. In the present study, the mechanism by which adiponectin is regulated by TNF-alpha was investigated. The decreased adiponectin mRNA levels by TNF-alpha were partially recovered by treatment with a c-Jun N-terminal kinase (JNK) inhibitor or the PPAR-gamma agonist rosiglitazone in 3T3-L1 adipocytes. Interestingly, however, cotreatment with the JNK inhibitor and rosiglitazone led to a recovery of TNF-alpha-mediated adiponectin suppression to the control level. The JNK inhibitor regulated the expression of adiponectin by the increase of PPAR-gamma DNA binding activity and the recovery of its mRNA expression while rosiglitazone acted via a PPAR-gamma independent pathway which remains to be elucidated. These findings suggest that the JNK signaling pathway, activated by TNF-alpha, is involved in the regulation of adiponectin expression.  相似文献   
42.
43.
44.
Objective: To determine the effects of esculetin, a plant phenolic compound with apoptotic activity in cancer cells, on 3T3‐L1 adipocyte apoptosis and adipogenesis. Research Methods and Procedures: 3T3‐L1 pre‐confluent preadipocytes and lipid‐filled adipocytes were incubated with esculetin (0 to 800 μM) for up to 48 hours. Viability was determined using the Cell Titer 96 Aqueous One Solution cell proliferation assay; apoptosis was quantified by measurement of single‐stranded DNA. Post‐confluent preadipocytes were incubated with esculetin for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye; cells were also stained with Oil Red O for visual confirmation of effects on lipid accumulation. Results: In mature adipocytes, esculetin caused a time‐ and dose‐related increase in adipocyte apoptosis and a decrease in viability. Apoptosis was increased after only 6 hours by 400 and 800 μM esculetin (p < 0.05), and after 48 hours, as little as 50 μM esculetin increased apoptosis (p < 0.05). In preadipocytes, apoptosis was detectable only after 48 hours (p < 0.05) with 200 μM esculetin and higher concentrations. However, results of the cell viability assay indicated a reduction in preadipocyte number in a time‐ and dose‐related manner, beginning as early as 6 hours with 400 and 800 μM esculetin (p < 0.05). Esculetin also inhibited adipogenesis of 3T3‐L1 preadipocytes. Esculetin‐mediated inhibition of adipocyte differentiation occurred during the early, intermediate, and late stages of the differentiation process. In addition, esculetin induced apoptosis during the late stage of differentiation. Discussion: These findings suggest that esculetin can alter fat cell number by direct effects on cell viability, adipogenesis, and apoptosis in 3T3‐L1 cells.  相似文献   
45.
Cidea, the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) domain-containing protein, is targeted to lipid droplets in mouse adipocytes, where it inhibits triglyceride hydrolysis and promotes lipid storage. In mice, Cidea may prevent lipolysis by binding and shielding lipid droplets from lipase association. Here we demonstrate that human Cidea localizes with lipid droplets in both adipocyte and nonadipocyte cell lines, and we ascribe specific functions to its protein domains. Expression of full-length Cidea in undifferentiated 3T3-L1 cells or COS-1 cells increases total cellular triglyceride and strikingly alters the morphology of lipid droplets by enhancing their size and reducing their number. Remarkably, both lipid droplet binding and increased triglyceride accumulation are also elicited by expression of only the carboxy-terminal 104 amino acids, indicating this small domain directs lipid droplet targeting and triglyceride shielding. However, unlike the full-length protein, expression of the carboxy-terminus causes clustering of small lipid droplets but not the formation of large droplets, identifying a novel function of the N terminus. Furthermore, human Cidea promotes lipid storage via lipolysis inhibition, as the expression of human Cidea in fully differentiated 3T3-L1 adipocytes causes a significant decrease in basal glycerol release. Taken together, these data indicate that the carboxy-terminal domain of Cidea directs lipid droplet targeting, lipid droplet clustering, and triglyceride accumulation, whereas the amino terminal domain is required for Cidea-mediated development of enlarged lipid droplets.  相似文献   
46.
Nonstationary metabolic flux analysis (NMFA) is at present a very computationally intensive exercise, especially for large reaction networks. We applied elementary metabolite unit (EMU) theory to NMFA, dramatically reducing computational difficulty. We also introduced block decoupling, a new method that systematically and comprehensively divides EMU systems of equations into smaller subproblems to further reduce computational difficulty. These improvements led to a 5000-fold reduction in simulation times, enabling an entirely new and more complicated set of problems to be analyzed with NMFA. We simulated a series of nonstationary and stationary GC/MS measurements for a large E. coli network that was then used to estimate parameters and their associated confidence intervals. We found that fluxes could be successfully estimated using only nonstationary labeling data and external flux measurements. Addition of near-stationary and stationary time points increased the precision of most parameters. Contrary to prior reports, the precision of nonstationary estimates proved to be comparable to the precision of estimates based solely on stationary data. Finally, we applied EMU-based NMFA to experimental nonstationary measurements taken from brown adipocytes and successfully estimated fluxes and some metabolite concentrations. By using NFMA instead of traditional MFA, the experiment required only 6 h instead of 50 (the time necessary for most metabolite labeling to reach 99% of isotopic steady state).  相似文献   
47.
Objectives: Obesity is an important risk factor for the development of insulin resistance and type 2 diabetes. Recently, a newly described circulating hormone resistin, which is expressed primarily in adipocytes, has been shown to antagonize insulin action in mice. Resistin, therefore, has been suggested to play a role in the pathogenesis of insulin resistance. Research Methods and Procedures: We studied the expression of the resistin gene in primary cultured human adipocytes and preadipocytes. We also examined resistin gene expression in subcutaneous abdominal adipocytes in women (n = 24) over a wide range of body weight and insulin sensitivity. Results: Whereas resistin gene expression was barely detectable in mature adipocytes, it was highly expressed in preadipocytes. Adipogenic differentiation of preadipocytes was associated with a time-dependent down-regulation of resistin gene expression. There was no relationship between body weight, insulin sensitivity, or other metabolic parameters and adipocyte resistin gene expression in the clinical study. Discussion: Together these findings do not support an important role of adipose-tissue resistin gene expression in human insulin resistance.  相似文献   
48.
《Journal of lipid research》2017,58(12):2348-2364
Lipin-1 is a Mg2+-dependent phosphatidic acid phosphatase (PAP) that in mice is necessary for normal glycerolipid biosynthesis, controlling adipocyte metabolism, and adipogenic differentiation. Mice carrying inactivating mutations in the Lpin1 gene display the characteristic features of human familial lipodystrophy. Very little is known about the roles of lipin-1 in human adipocyte physiology. Apparently, fat distribution and weight is normal in humans carrying LPIN1 inactivating mutations, but a detailed analysis of adipose tissue appearance and functions in these patients has not been available so far. In this study, we performed a systematic histopathological, biochemical, and gene expression analysis of adipose tissue biopsies from human patients harboring LPIN1 biallelic inactivating mutations and affected by recurrent episodes of severe rhabdomyolysis. We also explored the adipogenic differentiation potential of human mesenchymal cell populations derived from lipin-1 defective patients. White adipose tissue from human LPIN1 mutant patients displayed a dramatic decrease in lipin-1 protein levels and PAP activity, with a concomitant moderate reduction of adipocyte size. Nevertheless, the adipose tissue develops without obvious histological signs of lipodystrophy and with normal qualitative composition of storage lipids. The increased expression of key adipogenic determinants such as SREBP1, PPARG, and PGC1A shows that specific compensatory phenomena can be activated in vivo in human adipocytes with deficiency of functional lipin-1.  相似文献   
49.
《Developmental cell》2021,56(19):2722-2740.e6
  1. Download : Download high-res image (294KB)
  2. Download : Download full-size image
  相似文献   
50.
Although adipogenesis is associated with induction of endoplasmic reticulum (ER) stress, the role of selenoprotein S (SEPS1), an ER resident selenoprotein known to regulate ER stress and ER-associated protein degradation, is unknown. We found an inverse relationship between SEPS1 level in adipose tissue and adiposity in mice. While SEPS1 expression was increased during adipogenesis, a markedly reduced SEPS1 protein level was found in the early phase of adipogenesis due to dexamethasone (DEX)-induced proteosomal degradation of SEPS1. Overexpression of SEPS1 in the early phase of cell differentiation resulted in impairment of adipogenesis with reduced levels of CCAAT/enhancer binding protein α and other adipocyte marker genes during the course of adipogenesis. Conversely, knockdown of SEPS1 resulted in the promotion of adipogenesis. Additionally, altered SEPS1 expression was associated with changes in expression of ER stress marker genes in the early phase of adipogenesis, and ubiquitin-proteasome system (UPS)-related ubiquitination and proteasome function. Our study reveals that SEPS1 is a novel anti-adipogenic selenoprotein that modulates ER stress- and UPS-dependent adipogenesis. Our results also identifies a novel function of DEX in the regulation of adipogenesis through induction of SEPS1 degradation. Taken together, DEX-dependent degradation of SEPS1 in the early phase of adipogenesis is necessary for initiating ER stress- and UPS-dependent maturation of adipocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号