首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1304篇
  免费   79篇
  国内免费   106篇
  2024年   1篇
  2023年   21篇
  2022年   34篇
  2021年   49篇
  2020年   31篇
  2019年   30篇
  2018年   40篇
  2017年   29篇
  2016年   37篇
  2015年   33篇
  2014年   50篇
  2013年   70篇
  2012年   37篇
  2011年   54篇
  2010年   59篇
  2009年   101篇
  2008年   79篇
  2007年   80篇
  2006年   81篇
  2005年   60篇
  2004年   53篇
  2003年   60篇
  2002年   40篇
  2001年   41篇
  2000年   31篇
  1999年   21篇
  1998年   24篇
  1997年   24篇
  1996年   18篇
  1995年   34篇
  1994年   25篇
  1993年   21篇
  1992年   22篇
  1991年   20篇
  1990年   15篇
  1989年   7篇
  1988年   8篇
  1987年   8篇
  1986年   2篇
  1985年   8篇
  1984年   4篇
  1983年   7篇
  1982年   4篇
  1981年   1篇
  1980年   7篇
  1979年   2篇
  1978年   5篇
  1976年   1篇
排序方式: 共有1489条查询结果,搜索用时 140 毫秒
71.
Leaf characteristics reflecting the size, lifespan (longevity), moisture content (degree of succulence) and complexity of structure of 20 mangrove species were studied over several years at 13 locations along the tropical and subtropical Australian coast. These characteristics were found to fall generally within the ranges of those for woody species from other ecosystems. With the exception of one species, it was found that leaf longevity was related inversely to leaf moisture content, increasing from nearly 6 months in more succulent species to over 2 years in less succulent species. This suggested that more succulent leaves are less complex in their structure because they have less well‐developed ability to compartmentalize salt. There was a tendency also for leaf longevity to increase in species with larger leaves. These findings were consistent with the general view for land plants that leaf longevity is greater in species that have developed tolerance to environmental stress, salt particularly in the case of mangroves. Leaf tissue in such species is more robust or complex and requires greater metabolic resources in its construction; the plant is then advantaged by retaining the tissue for longer periods. Classification of the species considered here, based on their leaf longevity, moisture content and complexity, identified phylogenetically related species groupings that reflected these leaf longevity effects.  相似文献   
72.
目的:探讨人工髋关节置换术患者发生股骨假体周围骨折的相关危险因素,为临床预防和治疗提供参考资料。方法:回顾性分析2012年5月~2015年5月在我院接受人工髋关节置换术的92例患者的临床资料。根据是否发生股骨假体周围骨折将所选患者分为研究组和对照组,每组46例,比较两组患者的性别分布、年龄、骨折类型及假体固定方式等,分析影响患者发生股骨假体周围骨折的危险因素。结果:研究组患者骨折类型多为A2型,患者平均年龄、女性患者数及使用生物假体的比例均高于对照组,差异具有统计学意义(P0.05)。患者性别、年龄、骨折类型及假体固定方式是人工髋关节置换术患者发生股骨假体周围骨折的危险因素(OR=1.993、2.012和2.363,P0.05)。结论:高龄女性患者是发生股骨周围假体骨折的高危人群,骨质疏松及骨量减少是引发该并发症的主要危险因素。  相似文献   
73.
MRI,PET,和CT等医学影像在新药研发和精准医疗中起着越来越重要的作用。影像技术可以被用来诊断疾病,评估药效,选择适应患者,或者确定用药剂量。 随着人工智能技术的发展,特别是机器学习以及深度学习技术在医学影像中的应用,使得我们可以用更短的时间,更少的放射剂量获取更高质量的影像。这些技术还可以帮助放射科医生缩短读片时间,提高诊断准确率。除此之外,机器学习技术还可以提高量化分析的可行性和精度,帮助建立影像与基因以及疾病的临床表现之间的关系。首先根据不同形态的医学影像,简单介绍他们在药物研发和精准医疗中的应用。并对机器学习在医学影像中的功能作一概括总结。最后讨论这个领域的挑战和机遇。  相似文献   
74.
叉角厉蝽Eocanthecona furcellate(Wolff)是广泛分布于热带亚热带地区的一种重要捕食性天敌昆虫。为评估人工饲料饲养的叉角厉蝽的捕食能力,在实验室采用捕食功能反应的方法,以黄粉虫作为中介猎物饲养的叉角厉蝽为对照,评价了人工饲料饲养的叉角厉蝽3龄若虫、5龄若虫以及雌成虫对黄粉虫Tenebriomolitor(L.)幼虫及斜纹夜蛾Spodoptera litura(Fabricius)3龄幼虫、5龄幼虫的捕食效能。结果表明,两种饲料饲养的不同虫态叉角厉蝽的捕食量均随着猎物密度的增加而上升,当猎物密度增加到一定水平,捕食量趋于稳定,其捕食功能反应均符合HollingII模型。人工饲料组饲养的各虫态叉角厉蝽与对照组的对黄粉虫幼虫的捕食量没有明显差异;在饱和猎物密度条件下,人工饲料饲养的叉角厉蝽3龄若虫、5龄若虫以及雌成虫对斜纹夜蛾3龄幼虫的日最大捕食量分别为7.20、9.20、14.60头,对斜纹夜蛾5龄幼虫的日最大捕食量分别4.20、5.80、6.20头,均略低于对照组,但从取食猎物数量上来看,仍保持较强的捕食能力。  相似文献   
75.
Abstract

Aquatic plant treatment system (APTS) is a widely used sewage purification technique; however, it requires a large area of land due to its long hydraulic retention time. In order to improve the economic value of APTS in the treatment of rural sewage, an aquatic vegetables (lettuce) purification system strengthened with a set of supplemented lighting was evaluated. The effect of supplemented lighting of blue and red light on lettuce growth and sewage purification was studied by batch experiments. The results showed that the lettuce growth and the removal rates of pollutants were enhanced by supplemented lighting, of which red light is superior to blue light, and the increase of red light intensity further promoted the growth of lettuce and the removal rate of pollutants. Supplementary light is a suitable method which could improve the purification effect of APTS in most weather conditions especially in countries where day-night light patterns change substantially between winter and summer. The results would be useful for the APTS design for treating rural domestic sewage.  相似文献   
76.
于2015年4月(春季)、2015年6月(夏季)、2015年10月(秋季)、2016年1月(冬季),在海南东寨港红树林保护区潮间带进行多次采样,分选小型底栖动物,并测定沉积物中有机质和叶绿素a含量,分析不同季节东寨港红树林小型底栖动物丰度与有机质、Chla的相关性。研究结果,沉积物中小型底栖动物主要包括自由生活线虫、桡足类、涡虫、多毛类、寡毛类,线虫为优势类群;有机质含量为25.22%—93.41%,平均值为46.6%; Chla含量为0.188—6.303μg/g,平均值为1.731μg/g。相关性分析显示,春季小型底栖动物的丰度和Chla含量呈显著正相关(Pearson's r=0.684; P0.05),夏季小型底栖动物的丰度与有机质含量呈显著负相关(Pearson's r=-0.518; P0.05)。  相似文献   
77.
《IRBM》2019,40(4):244-252
BackgroundMany head injury indices and finite element (FE) head models have been proposed to predict traumatic brain injury (TBI). Although FE head models are suitable methods with high accuracy, they are computationally intensive. Head motion-based brain injury criteria are usually fast tools with lower accuracy. So, the objective of this study is to propose new criteria along with an artificial neural network model to predict TBI risks, which can be fast and accurate.MethodsFor this purpose, 250 FE head simulations have been carried out at 5 magnitudes and 50 rotational impact directions using the SIMon model. The effects of directions and magnitudes of rotational impacts were assessed for cumulative strain damage measure (CSDM) values. Next, statistical analysis and neural network were applied to predict CSDM values.ResultsThe results of the present research showed that the direction of rotation in the sagittal and frontal planes had a considerable effect on the CSDM values. Furthermore, new brain injury indices and a radial basis function neural network have been proposed to predict CSDM values which having high correlation coefficients with SIMon responses.ConclusionsThe results of this research demonstrated that rotational impact directions should be used to develop new head injury criteria being able to predict CSDM values. However, findings of present research proved that head motion-based brain injury criteria and RBF network can be used to predict FE head model responses with high speed and accuracy.  相似文献   
78.
Rapid diversification is common among herbivorous insects and is often the result of host shifts, leading to the exploitation of novel food sources. This, in turn, is associated with adaptive evolution of female oviposition behavior and larval feeding biology. Although natural selection is the typical driver of such adaptation, the role of sexual selection is less clear. In theory, sexual selection can either accelerate or impede adaptation. To assess the independent effects of natural and sexual selection on the rate of adaptation, we performed a laboratory natural selection experiment in a herbivorous bruchid beetle (Callosobruchus maculatus). We established replicated selection lines where we varied natural (food type) and sexual (mating system) selection in a 2 x 2 orthogonal design, and propagated our lines for 35 generations. In half of the lines, we induced a host shift whereas the other half was kept on the ancestral host. We experimentally enforced monogamy in half of the lines, whereas the other half remained polygamous. The beetles rapidly adapted to the novel host, which primarily involved increased host acceptance by females and an accelerated rate of larval development. We also found that our mating system treatment affected the rate of adaptation, but that this effect was contingent upon food type. As beetles adapted to the novel host, sexual selection reinforced natural selection whereas populations residing close to their adaptive peak (i.e., those using their ancestral host) exhibited higher fitness in the absence of sexual selection. We discuss our findings in light of current sexual selection theory and suggest that the net evolutionary effect of reproductive competition may critically depend on natural selection. Sexual selection may commonly accelerate adaptation under directional natural selection whereas sexual selection, and the associated load brought by sexual conflict, may tend to depress population fitness under stabilizing natural selection.  相似文献   
79.
24例人工全膝关节置换术患者手术前后的护理   总被引:5,自引:5,他引:0  
目的:观察2000年3月至2003年4月人工全膝关节置换术(TKR)患者围手术期进行系统康复训练的护理.方法:选择接受TKR的患者24例30个膝关节,入院后进行术前康复教育和肢体的康复训练(包括肌肉、关节训练及步态训练等),术后护理包括有针对性的心理护理及系统规范的康复训练.结果:本组术后随访6-12周,效果满意,优良率达95.8%,未发生并发症.结论:TKP患者围手术期间进行系统康复训练,可以减少膝关节并发症,增强膝关节活动范围,满足日常生活所需的关节活动,提高生活质量.  相似文献   
80.
An early investigation at the Biosphere-2 Laboratory, an artificial ecosystem in the Arizona desert, had shown that the flavonoid content of cacti grown in glass-filtered solar light was lower than of cacti grown in normal solar light. This was attributed to the absence of ultraviolet (UV) radiation, which is required for flavonoid biosynthesis. In this study, two species of Opuntia cacti were grown in solar and UV-depleted light, and their flavonol contents of different tissues were determined by HPLC. O. wilcoxii, previously raised in the absence of UV light, was exposed to normal solar light. The flavonol content of young O. wilcoxii pads was 28-fold higher when grown in solar light as compared to UV-depleted light. The flavonol contents of mature outer tissues were only slightly higher. O. violacea, previously raised in solar light, was also maintained in the same UV-depleted artificial ecosystem. The flavonol content after hydrolysis of outer tissues was similar, whether grown in solar light or UV-depleted light. We attribute these responses to different biosynthetic and metabolic rates of young vs. mature plant tissues; slow-growing mature tissues neither produce nor metabolize compounds as quickly as immature tissues. These findings indicate that artificial ecosystems can influence the production of natural products in cultivated plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号