首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5992篇
  免费   654篇
  国内免费   247篇
  2023年   104篇
  2022年   117篇
  2021年   180篇
  2020年   198篇
  2019年   252篇
  2018年   228篇
  2017年   182篇
  2016年   208篇
  2015年   233篇
  2014年   335篇
  2013年   465篇
  2012年   265篇
  2011年   265篇
  2010年   247篇
  2009年   226篇
  2008年   192篇
  2007年   263篇
  2006年   224篇
  2005年   181篇
  2004年   153篇
  2003年   171篇
  2002年   155篇
  2001年   101篇
  2000年   85篇
  1999年   117篇
  1998年   98篇
  1997年   94篇
  1996年   103篇
  1995年   87篇
  1994年   103篇
  1993年   88篇
  1992年   82篇
  1991年   88篇
  1990年   70篇
  1989年   75篇
  1988年   65篇
  1987年   58篇
  1986年   48篇
  1985年   71篇
  1984年   114篇
  1983年   77篇
  1982年   83篇
  1981年   65篇
  1980年   58篇
  1979年   53篇
  1978年   27篇
  1977年   29篇
  1976年   31篇
  1975年   18篇
  1973年   18篇
排序方式: 共有6893条查询结果,搜索用时 15 毫秒
991.
Identifying the factors that influence spatial genetic structure among populations can provide insights into the evolution of invasive plants. In this study, we used the common reed (Phragmites australis), a grass native in Europe and invading North America, to examine the relative importance of geographic, environmental (represented by climate here), and human effects on population genetic structure and its changes during invasion. We collected samples of P. australis from both the invaded North American and native European ranges and used molecular markers to investigate the population genetic structure within and between ranges. We used path analysis to identify the contributions of each of the three factors—geographic, environmental, and human‐related—to the formation of spatial genetic patterns. Genetic differentiation was observed between the introduced and native populations, and their genetic structure in the native and introduced ranges was different. There were strong effects of geography and environment on the genetic structure of populations in the native range, but the human‐related factors manifested through colonization of anthropogenic habitats in the introduced range counteracted the effects of environment. The between‐range genetic differences among populations were mainly explained by the heterogeneous environment between the ranges, with the coefficient 2.6 times higher for the environment than that explained by the geographic distance. Human activities were the primary contributor to the genetic structure of the introduced populations. The significant environmental divergence between ranges and the strong contribution of human activities to the genetic structure in the introduced range suggest that invasive populations of P. australis have evolved to adapt to a different climate and to human‐made habitats in North America.  相似文献   
992.
A basket‐integrated optical device is developed to consistently treat tubular tissue by centering an optical diffuser in the lumen. Four nitinol arms in conjunction with the optical diffusing applicator are deployed to induce homogeneous circumferential light emission and concentric photothermal coagulation on tracheal tissue. A 1470‐nm laser light is employed for the tissue testing at various irradiation conditions and evaluated in terms of thermal gradient and temperature evolution. Preliminary experiments on liver tissue demonstrate the concentric development of the radial thermal coagulation in the tissue (eccentric ratio = ~5.5%). The interstitial tissue temperature increases with the total amount of energy delivery (around 65°C). Ex vivo trachea testing yields up to 16.5% tissue shrinkage due to dehydration as well as uniform ablation of the cilia and goblet cells in a mucosa layer under 7‐W irradiation for 10 s. The proposed optical device may be a feasible therapeutic method to entail the circumferential coagulation in the tubular tissues in a reliable manner.   相似文献   
993.
The search for disease markers in whole blood, or easily accessible blood components by spectral methods is a highly important aspect in the field of biophotonic research for disease diagnostics and screening, since it promises a minimally invasive approach to assess an individual's state of health. Fourier transform infrared spectroscopy, in particular, promises to be a fast, inexpensive method to search for markers of disease, since it detects variation in the proteome, lipidome and metabolome of biofluids, or activation of immune cells. However, the analysis of any materials by spectral methods is confounded by external factors such as those related to sample deposition and data acquisition, and by inherent variations in blood plasma concentration of small molecules (lactate, carbonate, phosphate, glucose) that varies between individual subjects and even for a given individual, as a function of time. Furthermore, observed differences in spectral patterns between patient samples and the control group may be due to the body's immune response (in particular, to the albumin to globulin ratio) and therefore, may not be specific to disease. These factors need to be accounted for in any effort to reliably detect much smaller variations in the concentration of disease‐specific markers.  相似文献   
994.
Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples.  相似文献   
995.

Purpose

Today's orthotics should be designed to apply the external orthosis moment to the knee joint solely during the stance phase instead of the entire gait cycle. The aim of this study was to validate the reliability of a simple device for measuring forces at the leg–orthosis interface and describe the behavior of an innovating dynamic unloader knee brace built to interrupt its mechanical action during large knee flexion (swing phase of gait).

Methods

A compression testing machine was used to apply known (standard) forces to the device (modeled forces) and the results were compared.

Results

The low absolute mean bias (4%), the narrow agreement limits associated with the Bland and Altman analysis as well as the significant linear correlation (r=0.99; p<0.001) validate the agreement between standard and modeled forces. Likewise, the low standard error of measurement between trials (1.3%) and the intraclass correlation coefficient (1.00) reflect high test-retest reliability.

Conclusion

These results demonstrate the validity of the proposed device for measuring constraints induced by the dynamic unloader knee brace. An example of an application is provided through an orthosis moment calculation using kinematic data, which reveal a changeable mechanical action, necessary to improve comfort resulting in potentially better compliance.  相似文献   
996.
Following the importance of antler-type fruiting bodies of Ganoderma lucidum, in this study, the impact of main growth parameters such as ventilation and light on the development of antler-type fruiting bodies has been investigated together with the determination of physico-chemical properties of antler fruiting bodies. For this, the primordia bags of G. lucidum were kept under controlled ventilation to adjust the CO2 produced by the mushrooms owing to its respiration under light and dark conditions. The bioactive compounds such as phenolics, flavonoids, water-soluble polysaccharides and ganoderic acid showed a two-fold increase in the antler-type fruiting bodies as compared to normal kidney-shaped fruiting bodies. It is assumed from this study that the antler type fruiting bodies are developed due to restricted ventilation which causes an increase in the level of CO2 gas in the air as a result of respiration of mushroom. The shape and colour of antler fruiting bodies again dependent on the light provided in the growth chamber. This study also proves that with the manipulation of light and ventilation antler-type fruiting bodies of G. lucidum could be developed with higher quantity of bioactive compounds and with higher antioxidant potential.  相似文献   
997.
Protein glycosylation is post-translational modification (PTM) which is important for pharmacokinetics and immunogenicity of recombinant glycoprotein therapeutics. As a result of variations in monosaccharide composition, glycosidic linkages and glycan branching, glycosylation introduces considerable complexity and heterogeneity to therapeutics. The host cell line used to produce the glycoprotein has a strong influence on the glycosylation because different host systems may express varying repertoire of glycosylation enzymes and transporters that contributes to specificity and heterogeneity in glycosylation profiles. In this review, we discuss the types of host cell lines currently used for recombinant therapeutic production, their glycosylation potential and the resultant impact on glycoprotein properties. In addition, we compare the reported glycosylation profiles of four recombinant glycoproteins: immunoglobulin G (IgG), coagulation factor VII (FVII), erythropoietin (EPO) and alpha-1 antitrypsin (A1AT) produced in different mammalian cells to establish the influence of mammalian host cell lines on glycosylation.  相似文献   
998.
In today’s biopharmaceutical industries, the lead time to develop and produce a new monoclonal antibody takes years before it can be launched commercially. The reasons lie in the complexity of the monoclonal antibodies and the need for high product quality to ensure clinical safety which has a significant impact on the process development time. Frameworks such as quality by design are becoming widely used by the pharmaceutical industries as they introduce a systematic approach for building quality into the product. However, full implementation of quality by design has still not been achieved due to attrition mainly from limited risk assessment of product properties as well as the large number of process factors affecting product quality that needs to be investigated during the process development. This has introduced a need for better methods and tools that can be used for early risk assessment and predictions of critical product properties and process factors to enhance process development and reduce costs. In this review, we investigate how the quantitative structure–activity relationships framework can be applied to an existing process development framework such as quality by design in order to increase product understanding based on the protein structure of monoclonal antibodies. Compared to quality by design, where the effect of process parameters on the drug product are explored, quantitative structure–activity relationships gives a reversed perspective which investigates how the protein structure can affect the performance in different unit operations. This provides valuable information that can be used during the early process development of new drug products where limited process understanding is available. Thus, quantitative structure–activity relationships methodology is explored and explained in detail and we investigate the means of directly linking the structural properties of monoclonal antibodies to process data. The resulting information as a decision tool can help to enhance the risk assessment to better aid process development and thereby overcome some of the limitations and challenges present in QbD implementation today.  相似文献   
999.
Francisella noatunensis subsp. orientalis (FNO) is an important emerging pathogen associated with disease outbreaks in farm-raised Nile tilapia. FNO genetic diversity using PCR-based typing, no intra-species discrimination was achieved among isolates/strains from different countries, thus demonstrating a clonal behaviour pattern. In this study, we aimed to evaluate the population structure of FNO isolates by comparing whole-genome sequencing data. The analysis of recombination showed that Brazilian isolates group formed a clonal population; whereas other lineages are also supported by this analysis for isolates from foreign countries. The whole-genome multilocus sequence typing (wgMLST) analysis showed varying numbers of dissimilar alleles, suggesting that the Brazilian clonal population are in expansion. Each Brazilian isolate could be identified as a single node by high-resolution gene-by-gene approach, presenting slight genetic differences associated to mutational events. The common ancestry node suggests a single entry into the country before 2012, and the rapid dissemination of this infectious agent may be linked to market sales of infected fingerlings.  相似文献   
1000.
Lectin mapping, carbohydrate analysis and electrospray mass spectrometry of boar seminal plasma PSP-II glycoforms show that its single N-glycosylation site displays a repertoire of carbohydrate structures consisting of the basic pentasaccharide core Manα 1–6[Manα 1–3]Manβ1-4GlcNAcβ1-4GlcNAc with a fucosyl residue α1-6-linked to the innermost N-acetylglucosamine residue. Other glycoforms display fucosylated hybrid-type or monoantennary complex-type chains, some of which contain α2-6-linked sialic acid. N-acetylgalactosamine, possibly in Galβ1-3GalNAc sequence, is present in most of the PSP-II glycoforms. Abbreviations: PSP-I and PSP-II, porcine seminal plasma proteins I and II; PNGaseF, peptide-N4-(N-acetyl-β-D-glucosaminyl) asparagine amidase (EC 3.5.1.52) from Flavobacterium meningosepticum; ConA, Cannavalia ensiformis (jack bean) agglutinin; GNA, Galanthus nivalis (snowdrop) agglutin; SNA, Sambucus nigra (elderberry) agglutinin; MAA, Maackia amurensis (maakia) agglutinin; PNA, Arachis hypogaea (peanut) agglutinin; DSA, Datura stramonium (jimson weed) agglutinin; AAA, Aleuria aurantia agglutinin This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号