首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26188篇
  免费   1750篇
  国内免费   1780篇
  2024年   37篇
  2023年   315篇
  2022年   468篇
  2021年   785篇
  2020年   699篇
  2019年   1052篇
  2018年   992篇
  2017年   604篇
  2016年   670篇
  2015年   907篇
  2014年   1782篇
  2013年   1802篇
  2012年   1269篇
  2011年   1844篇
  2010年   1340篇
  2009年   1488篇
  2008年   1513篇
  2007年   1705篇
  2006年   1445篇
  2005年   1198篇
  2004年   1085篇
  2003年   918篇
  2002年   775篇
  2001年   447篇
  2000年   504篇
  1999年   455篇
  1998年   486篇
  1997年   362篇
  1996年   331篇
  1995年   308篇
  1994年   232篇
  1993年   211篇
  1992年   193篇
  1991年   170篇
  1990年   144篇
  1989年   118篇
  1988年   112篇
  1987年   98篇
  1986年   63篇
  1985年   107篇
  1984年   156篇
  1983年   121篇
  1982年   135篇
  1981年   59篇
  1980年   55篇
  1979年   51篇
  1978年   40篇
  1977年   19篇
  1976年   13篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 243 毫秒
41.
Salt-sensitive hypertension is a major risk factor for renal impairment leading to chronic kidney disease. High-salt diet leads to hypertonic skin interstitial volume retention enhancing the activation of the tonicity-responsive enhancer-binding protein (TonEBP) within macrophages leading to vascular endothelial growth factor C (VEGF-C) secretion and NOS3 modulation. This promotes skin lymphangiogenesis and blood pressure regulation. Whether VEGF-C administration enhances renal and skin lymphangiogenesis and attenuates renal damage in salt-sensitive hypertension remains to be elucidated. Hypertension was induced in BALB/c mice by a high-salt diet. VEGF-C was administered subcutaneously to high-salt-treated mice as well as control animals. Analyses of kidney injury, inflammation, fibrosis, and biochemical markers were performed in vivo. VEGF-C reduced plasma inflammatory markers in salt-treated mice. In addition, VEGF-C exhibited a renal anti-inflammatory effect with the induction of macrophage M2 phenotype, followed by reductions in interstitial fibrosis. Antioxidant enzymes within the kidney as well as urinary RNA/DNA damage markers were all revelatory of abolished oxidative stress under VEGF-C. Furthermore, VEGF-C decreased the urinary albumin/creatinine ratio and blood pressure as well as glomerular and tubular damages. These improvements were associated with enhanced TonEBP, NOS3, and lymphangiogenesis within the kidney and skin. Our data show that VEGF-C administration plays a major role in preserving renal histology and reducing blood pressure. VEGF-C might constitute an interesting potential therapeutic target for improving renal remodeling in salt-sensitive hypertension.  相似文献   
42.
Abstract: Schwannoma-derived growth factor (SDGF) is a potent mitogen and neuronal differentiation factor. Because of its relationship to epidermal growth factor (EGF) and the heregulins, it was asked if SDGF interacts with the EGF receptor or HER2/neu. SDGF binds to and causes the phosphorylation on tyrosine of the EGF receptor but not HER2/neu.  相似文献   
43.
In the fruitfly, Drosophila melanogaster, autophagy and caspase activity function in parallel in the salivary gland during metamorphosis and in a common regulatory hierarchy during oogenesis. Both autophagy and caspase activity progressively increase in the remodeling fat body, and they are induced by a pulse of the molting hormone (20-hydroxyecdysone, 20E) during the larval-prepupal transition. Inhibition of autophagy and/or caspase activity in the remodeling fat body results in 25–40% pupal lethality, depending on the genotypes. Interestingly, a balancing crosstalk occurs between autophagy and caspase activity in this tissue: the inhibition of autophagy induces caspase activity and the inhibition of caspases induces autophagy. The Drosophila remodeling fat body provides an in vivo model for understanding the molecular mechanism of the balancing crosstalk between autophagy and caspase activity, which oppose with each other and are induced by the common stimulus 20E, and blockage of either path reinforces the other path.  相似文献   
44.
The TGF-β1-Smad pathway is a well-known negative regulator of muscle growth; however, its potential role in resistance training-induced muscle hypertrophy is not clear. The present study proposed to determine whether and how this pathway may be involved in resistance training-induced muscle hypertrophy. Skeletal muscle samples were collected from the control, trained (RT), control + SB431542 (CITGF), and trained + SB431542 (RTITGF) animals following 3, 5, and 8 weeks of resistance training. Inhibition of the TGF-β1-Smad pathway by SB431542 augmented muscle satellite cells activation, upregulated Akt/mTOR/S6K1 pathway, and attenuated FOXO1 and FOXO3a expression in the CITGF group (all p < .01), thereby causing significant muscle hypertrophy in animals from the CITGF. Resistance training significantly decreased muscle TGF-β1 expression and Smad3 (P-Smad3S423/425) phosphorylation at COOH-terminal residues, augmented Smad2 (P-Smad2-LS245/250/255) and Smad3 (P-Smad3-LSer208) phosphorylation levels at linker sites (all p < .01), and led to a muscle hypertrophy which was unaffected by SB431542, suggesting that the TGF-β1-Smad signaling pathway is involved in resistance training-induced muscle hypertrophy. The effects of inhibiting the TGF-β1-Smad signaling pathway were not additive to the resistance training effects on FOXO1 and FOXO3a expression, muscle satellite cells activation, and the Akt/mTOR/S6K1 pathway. Resistance training effect of satellite cell differentiation was independent of the TGF-β1-Smad signaling pathway. These results suggested that the effect of the TGF-β1-Smad signaling pathway on resistance training-induced muscle hypertrophy can be attributed mainly to its diminished inhibitory effects on satellite cell activation and protein synthesis. Suppressed P-Smad3S423/425 and enhanced P-Smad2-LS245/250/255 and P-Smad3-LSer208 are the molecular mechanisms that link the TGF-β1-Smad signaling pathway to resistance training-induced muscle hypertrophy.  相似文献   
45.
46.
Human pluripotent stem cells (PSCs) are presumed to have robust DNA repair pathways to ensure genome stability. PSCs likely need to protect against mutations that would otherwise be propagated throughout all tissues of the developing embryo. How these cells respond to genotoxic stress has only recently begun to be investigated. Although PSCs appear to respond to certain forms of damage more efficiently than somatic cells, some DNA damage response pathways such as the replication stress response may be lacking. Not all DNA repair pathways, including the DNA mismatch repair (MMR) pathway, have been well characterized in PSCs to date. MMR maintains genomic stability by repairing DNA polymerase errors. MMR is also involved in the induction of cell cycle arrest and apoptosis in response to certain exogenous DNA-damaging agents. Here, we examined MMR function in PSCs. We have demonstrated that PSCs contain a robust MMR pathway and are highly sensitive to DNA alkylation damage in an MMR-dependent manner. Interestingly, the nature of this alkylation response differs from that previously reported in somatic cell types. In somatic cells, a permanent G2/M cell cycle arrest is induced in the second cell cycle after DNA damage. The PSCs, however, directly undergo apoptosis in the first cell cycle. This response reveals that PSCs rely on apoptotic cell death as an important defense to avoid mutation accumulation. Our results also suggest an alternative molecular mechanism by which the MMR pathway can induce a response to DNA damage that may have implications for tumorigenesis.  相似文献   
47.
The present research was conducted in district Jhang, Pakistan, to evaluate the concentration of metals/metalloids in soil and pumpkin (Cucurbita maxima) irrigated with domestic wastewater. Data revealed that the levels of metals and metalloids in soil samples from two different sites were below the safe limits except Cd, whereas, in the vegetable, the concentrations of As, Se, Ni, Mo, Pb, Mn, and Cu were above the safe limits. The levels of 12 metals and metalloids in the soil were ranged between 0.14 to 22.76 mg/kg at site-I and 0.16 to 22.13 mg/kg at site-II. The levels of these metals in the vegetable were found 0.35 to 61.13 mg/kg at site-I and 0.31 to 53.63 mg/kg at site-II. The transfer factor at both sites was highest for As and Co. The pollution load index recorded for Se, Cu, Cd, Mo, Pb, and Co was greater than 1. The daily intake of As, Mn, and Mo was above the oral reference dose, which reflects that the intake of pumpkin is not safe for the inhabitants of the selected sites. The control measures should be taken to phytoextract heavy metals and metalloids from polluted sites so as to reduce the health risks.  相似文献   
48.
Abstract A factor showing inhibitory activity against human gingival fibrolasts was extracted from the cytosol fraction of Actinobacillus actinomycetemcomitans Y4. The activity markedly inhibited the proliferation of human gingival fibrolasts, but had no effect on cell viability or gross morphology. No such activity was found in cytosol fractions from either Porphyromonas gingivalis 381 or Escherichia coli HB101. The extract from A. actinomycetemcomitans Y4 was then purified by anion-exchange chromatography, hydroxyapatite chromatography and gel-filtration chromatography to give a single band on SDS-PAGE with an apparent molecular mass of 65 kDa. The purification ratio was 183-fold with a recovery rate of 5% compared with the crude extract (starting material) when the activity was assessed by direct cell counts.  相似文献   
49.
Measuring the effect of observations on Bayes factors   总被引:2,自引:0,他引:2  
PETTIT  L. I.; YOUNG  K. D. S. 《Biometrika》1990,77(3):455-466
  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号