首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   735篇
  免费   20篇
  国内免费   42篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   8篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   13篇
  2015年   12篇
  2014年   35篇
  2013年   55篇
  2012年   27篇
  2011年   27篇
  2010年   30篇
  2009年   41篇
  2008年   48篇
  2007年   44篇
  2006年   46篇
  2005年   40篇
  2004年   52篇
  2003年   48篇
  2002年   30篇
  2001年   19篇
  2000年   24篇
  1999年   33篇
  1998年   30篇
  1997年   20篇
  1996年   23篇
  1995年   24篇
  1994年   15篇
  1993年   11篇
  1992年   7篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
排序方式: 共有797条查询结果,搜索用时 218 毫秒
791.
Hox proteins control structural morphogenesis, pattern formation and cell fate in the developing embryo. To determine if Hoxb-5 participates in patterning of early airway branching during lung morphogenesis, gestational day 11.5 embryonic lung cultures were treated with retinoic acid (RA) to up-regulate and antisense oligonucleotides to down-regulate Hoxb-5 protein expression. RA (10?6 M) and Hoxb-5 antisense oligonucleotide (20 μM) treatment each significantly decreased branching morphogenesis (P<0.001), but the morphology of branching under these conditions was very different. RA-treated lungs had elongated primary branches but decreased further branching with increased Hoxb-5 immunostaining in subepithelial regions underlying these elongated airways. Western blots confirmed that Hoxb-5 protein was increased by 189±20% (mean±S.E.M., P<0.05) in RA-treated lungs compared to controls. In contrast, lungs treated with Hoxb-5 antisense oligos plus RA had foreshortened primary branches with rudimentary distal clefts resulting in decreased numbers of primary and subsequent branches. Immunohistochemistry confirmed that Hoxb-5 antisense oligos inhibited Hoxb-5 protein expression even in the presence of RA. We conclude that regional and quantitative changes in Hoxb-5 protein expression influence morphogenesis of the first airway divisions from the mainstem bronchi. RA-induced alterations in branching are mediated in part through regulated Hoxb-5 expression.  相似文献   
792.
CIGB‐300 is a novel anticancer peptide that impairs the casein kinase 2‐mediated phosphorylation by direct binding to the conserved phosphoacceptor site on their substrates. Previous findings indicated that CIGB‐300 inhibits tumor cell proliferation in vitro and induces tumor growth delay in vivo in cancer animal models. Interestingly, we had previously demonstrated that the putative oncogene B23/nucleophosmin (NPM) is the major intracellular target for CIGB‐300 in a sensitive human lung cancer cell line. However, the ability of this peptide to target B23/NPM in cancer cells with differential CIGB‐300 response phenotype remained to be determined. Interestingly, in this work, we evidenced that CIGB‐300's antiproliferative activity on tumor cells strongly correlates with its nucleolar localization, the main subcellular localization of the previously identified B23/NPM target. Likewise, using CIGB‐300 equipotent doses (concentration that inhibits 50% of proliferation), we demonstrated that this peptide interacts and inhibits B23/NPM phosphorylation in different cancer cell lines as evidenced by in vivo pull‐down and metabolic labeling experiments. Moreover, such inhibition was followed by a fast apoptosis on CIGB‐300‐treated cells and also an impairment of cell cycle progression mainly after 5 h of treatment. Altogether, our data not only validates B23/NPM as a main target for CIGB‐300 in cancer cells but also provides the first experimental clues to explain their differential antiproliferative response. Importantly, our findings suggest that further improvements to this cell penetrating peptide‐based drug should entail its more efficient intracellular delivery at such subcellular localization. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
793.
794.
795.
Abstract: Corticotropin-releasing factor (CRF) appears to integrate the endocrine, autonomic, immunologic, and behavioral responses of mammals to stress. To investigate further the role of CRF in the CNS, we have begun investigating the usefulness of "antisense knockdown" strategies directed against the CRF receptor using rat anterior pituitary gland primary cell cultures. The 15-mer antisense (5' CTG-CGG-GCG-CCG-TCC 3') and "scrambled" control (5' CGT-CCG-CGC-GCT-GCG 3') oligonucleotides were synthesized based on the rat CRF receptor sequence just downstream of the initiation codon. In each of four separate experiments, exposure to 10 µmol/L of antisense oligonucleotide for 40–67 h resulted in significant (17–36%) decreases in 125I-ovine CRF binding to pituitary cells as compared with either control (no oligonucleotide) or 10 µmol/L of "scrambled" oligonucleotide. Moreover, compared with scrambled oligonucleotide, exposure to 10 µmol/L of antisense oligonucleotide, which produced a 22% decrease in CRF receptor binding, also resulted in a significant attenuation of the adrenocorticotrophic hormone response following a 30-min challenge with 100 pmol/L of CRF. Thus, CRF receptor antisense oligonucleotides apparently reduce functional expression of CRF receptors. This technique may be useful in studying the kinetics of CRF receptor production and the physiological functions of CRF receptors within the CNS.  相似文献   
796.
The food-grade status and probiotic activity of lactic acid bacteria (LAB) make them attractive hosts for production and oral delivery of therapeutic heterologous vaccines and other proteins, yet these bacteria currently do not achieve recombinant protein expression at levels comparable to those seen in Escherichia coli and Saccharomyces cerevisiae. Limited levels of expressed recombinant protein per cell most likely constrain the vaccine’s immunogenic potential with respect to the magnitude and specificity of the immune response. With the goal of increasing recombinant protein expression per cell in Lactococcus lactis IL1403, a model LAB, we have constructed and evaluated a new vector that permits simultaneously-induced expression of GFP, a model recombinant protein, and antisense RNA inhibition of the clpP-encoded intracellular protease. While silencing of the rational target clpP does not lead to increased GFP per cell, the new dual-expression system provides an efficient and potentially high-throughput metabolic engineering tool for strain improvement.  相似文献   
797.
Oligonucleotides induce various cellular responses which are not due to the blockade of protein synthesis by an antisense mechanism. Oligonucleotides presenting double-stranded or G-quartet structures (ribo- or deoxyribonucleotides, phosphodiester or phosphorothioated) induce retraction of neurites and aggregation of chicken retinal cells within 10–20 h. This effect is reversible, non-toxic; it appears to require internalization and can be mimicked by treatment of the cells with an RGDS peptide. The oligonucleotides appear to trigger a cascade of intracellular events, affecting the adhesive properties of integrins. In addition, a subset of oligonucleotides induced platelet aggregation, probably through their interaction with membrane receptors. Recognition of these effects is important for the design and interpretation of antisense experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号