首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   2篇
  国内免费   20篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2014年   6篇
  2013年   2篇
  2012年   1篇
  2011年   18篇
  2010年   2篇
  2009年   9篇
  2008年   8篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
排序方式: 共有72条查询结果,搜索用时 158 毫秒
41.
We successfully enriched a novel anaerobic ammonium-oxidizing (anammox) bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and produced hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20–45 °C with a maximum activity at 37 °C. The maximum specific growth rate (μmax) was 0.0082 h?1 at 37 °C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5 ± 2.5 μM. The anammox activity was inhibited by nitrite (IC50 = 11.6 mM) but not by formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). The enriched anammox bacterium shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The enriched bacterium showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its 16S rRNA gene sequence. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.  相似文献   
42.
The feasibility of an anaerobic ammonium oxidation (anammox) process combined with a cell-immobilization technique for autotrophic nitrogen removal was investigated. Anammox biomass was cultivated from local activated sludge and achieved significant anammox activity in 6 months. The development of a mature anammox biomass was confirmed by fluorescence in situ hybridization (FISH) analysis and off-line activity measurements. The abundance fraction of the anammox bacteria determined by FISH analysis was estimated by software. The anaerobic ammonia oxidizers occupied almost half of the total cells. Additionally, the anammox biomass was granulated as spherical gel beads of 3-4 mm in diameter by using a cell-immobilization technique. The nitrogen removal activity was proved to be successfully retained in the beads, with about 80% of nitrogenous compounds (NH(4) (+), NO(2) (- )and total nitrogen) removed after 48 h. These results offer a promising technique for the preservation of anammox microorganisms, the protection of them against the unfavorable surroundings, and the prevention of biomass washout towards the implementation of sustainable nitrogen elimination biotechnology. This is the first report on the immobilization of anammox biomass as gel beads.  相似文献   
43.
Anammox bacteria have unique intracellular membranes that divide their cytoplasm into three separate compartments. The largest and innermost cytoplasmic compartment, the anammoxosome, is hypothesized to be the locus of all catabolic reactions in the anammox metabolism. Electron tomography showed that the anammoxosome and its membrane were highly folded. This finding was confirmed by a transmission electron microscopy study using different sample preparation methods. Further, in this study electron-dense particles were observed and electron tomography showed that they were confined to the anammoxosome compartment. Energy dispersive X-ray analysis revealed that these particles contained iron. The functional significance of a highly folded anammoxosome membrane and intracellular iron storage particles are discussed in relation to their possible function in energy generation.  相似文献   
44.
In the global ocean nitrogen cycle, the anaerobic ammonium-oxidizing (anammox) process is recognized as important. In this study, we established an enrichment culture of marine anammox bacteria (MAB) in a column-type reactor. The reactor, which included a porous polyester non-woven fabric that had been placed at the sea floor in advance for enrichment, was continuously fed with NH4Cl and NaNO2 for more than 1 year. Anammox activity in the MAB reactor was confirmed by 15N tracer analysis using 15NH4Cl and Na14NO2. We identified two 16S rRNA genes in the amplified DNA fragments derived from MAB, which were highly homologous with those from Candidatus “Scalindua wagneri” and an uncultured planctomycete clone. Fluorescence in situ hybridization analysis using an anammox-specific probe also confirmed that MAB predominated in the reactor. To our knowledge, this is the first report on the establishment of an enrichment culture of anammox bacteria from the marine environment using a continuous culture system.  相似文献   
45.
Many countries strive to reduce the emissions of nitrogen compounds (ammonia, nitrate, NOx) to the surface waters and the atmosphere. Since mainstream domestic wastewater treatment systems are usually already overloaded with ammonia, a dedicated nitrogen removal from concentrated secondary or industrial wastewaters is often more cost-effective than the disposal of such wastes to domestic wastewater treatment. The cost-effectiveness of separate treatment has increased dramatically in the past few years, since several processes for the biological removal of ammonia from concentrated waste streams have become available. Here, we review those processes that make use of new concepts in microbiology: partial nitrification, nitrifier denitrification and anaerobic ammonia oxidation (the anammox process). These processes target the removal of ammonia from gases, and ammonium-bicarbonate from concentrated wastewaters (i.e. sludge liquor and landfill leachate). The review addresses the microbiology, its consequences for their application, the current status regarding application, and the future developments.  相似文献   
46.
The demand for new and sustainable systems for nitrogen removal has increased dramatically in the last decade. It is clear that the conventional systems cannot deal with the increasing nitrogen loads in a cost effective way. As an alternative, the implementation of the anammox (anaerobic ammonium oxidation) process in the treatment of wastewater with high ammonium concentrations has been started. The compact anammox reactors can sustain high nitrogen loads without any problems. The highest observed anammox capacity is 8.9 kg N removed m-3 reactor day-1. The first 75 m3 anammox reactor is operating in Rotterdam, the Netherlands, combined with the partial nitrification process Single reaction system for High Ammonium Removal Over Nitrite (SHARON). Partial nitrification and anammox can also be combined in one reactor systems like Completely Autotrophic Nitrogen removal Over Nitrite (CANON) or Oxygen Limited Ammonium removal via Nitrification Denitrification (OLAND) where aerobic ammonium-oxidizing bacteria (AOB) and anammox bacteria cooperate under oxygen-limitation. These systems remove about 1.5 kg N m-3 reactor day-1. In addition to ammonium, urea can also be converted in the CANON system after a two-week adaptation period. The ecophysiological properties of the anammox bacteria make them very well suited to convert ammonium and nitrite. The Ks values for ammonium and nitrite are below 5 M. However, nitrite above 10 mM is detrimental for the anammox process, and oxygen reversibly inhibits the process at concentrations as low as 1 M. Acetate and propionate can be used by the anammox bacteria to convert nitrite and nitrate, whereas methanol and ethanol severely inhibit the anammox reaction. The enzyme hydroxylamine/hydrazine oxidoreductase (HAO), one of the key enzymes, is located in the anammoxosome, which is a membrane bound organelle. The membranes of the anammox bacteria contain unique ladderane lipids and hopanoids. The bacteria responsible for the anammox reaction are related to the Planctomycetes. The first anammox bacteria were isolated via Percoll centrifugation and characterized as Candidatus Brocadia anammoxidans. Survey of different wastewater treatment plants using anammox specific 16S rRNA gene primers and anammox specific oligonucleotide probes has revealed the presence of at least three other anammox bacteria, which have been tentatively named Candidatus Kuenenia stuttgartiensis, Candidatus Scalindua wagneri and Candidatus Scalindua brodae. A close relative of the latter, Candidatus Scalindua sorokinii was found to be responsible for about 50% of the nitrogen conversion in the anoxic zone of the Black Sea, making the anammox bacteria an important player in the oceanic nitrogen cycle.  相似文献   
47.
The bacteria that mediate the anaerobic oxidation of ammonium (anammox) are detected worldwide in natural and man-made ecosystems, and contribute up to 50% to the loss of inorganic nitrogen in the oceans. Two different anammox species rarely live in a single habitat, suggesting that each species has a defined but yet unknown niche. Here we describe a new anaerobic ammonium oxidizing bacterium with a defined niche: the co-oxidation of propionate and ammonium. The new anammox species was enriched in a laboratory scale bioreactor in the presence of ammonium and propionate. Interestingly, this particular anammox species could out-compete other anammox bacteria and heterotrophic denitrifiers for the oxidation of propionate in the presence of ammonium, nitrite and nitrate. We provisionally named the new species Candidatus "Anammoxoglobus propionicus".  相似文献   
48.
In the Completely Autotrophic Nitrogen removal Over Nitrite (CANON) process, aerobic and anaerobic ammonia oxidizing bacteria cooperate to remove ammonia in one oxygen-limited reactor. Kinetic studies, microsensor analysis, and fluorescence in situ hybridization on CANON biomass showed a partial differentiation of processes and organisms within and among aggregates. Under normal oxygen-limited conditions ( approximately 5 microM O2), aerobic ammonia oxidation (nitrification) was restricted to an outer shell (<100 microm) while anaerobic ammonia oxidation (anammox) was found in the central anoxic parts. Larger type aggregates (>500 microm) accounted for 68% of the anammox potential whereas 65% of the nitrification potential was found in the smaller aggregates (<500 microm). Analysis with O2 and NO2- microsensors showed that the thickness of the activity zones varied as a function of bulk O2 and NO2- concentrations and flow rate.  相似文献   
49.
In oxygen-limited marine ecosystems cooperation between marine nitrifiers and anaerobic ammonium-oxidizing (anammox) bacteria is of importance to nitrogen cycling. Strong evidence for cooperation between anammox bacteria and nitrifiers has been provided by environmental studies but little is known about the development of such communities, the effects of environmental parameters and the physiological traits of their constituents. In this study, a marine laboratory model system was developed. Cooperation between marine nitrifiers and anammox bacteria was induced by incremental exposure of a marine anammox community dominated by Scalindua species to oxygen in a bioreactor set-up under high ammonium (40 mM influent) conditions. Changes in the activities of the relevant functional groups (anammox bacteria, aerobic ammonia oxidizers and nitrite oxidizers) were monitored by batch tests. Changes in community composition were followed by Fluorescence in situ Hybridization (FISH) and by amplification and sequencing of 16S rRNA and amoA genes. A co-culture of Scalindua sp., an aerobic ammonia-oxidizing Nitrosomonas-like species, and an aerobic (most likely Nitrospira sp.) nitrite oxidizer was obtained. Aerobic ammonia oxidizers became active immediately upon exposure to oxygen and their numbers increased 60-fold. Crenarchaea closely related to the ammonia-oxidizer Candidatus 'Nitrosopumilus maritimus' were detected in very low numbers and their contribution to nitrification was assumed negligible. Activity of anammox bacteria was not inhibited by the increased oxygen availability. The developed marine model system proved an effective tool to study the interactions between marine anammox bacteria and nitrifiers and their responses to changes in environmentally relevant conditions.  相似文献   
50.
厌氧氨氧化菌特性及其在生物脱氮中的应用   总被引:9,自引:0,他引:9  
在无分子氧环境中,同时存在NH4^+和NO2^-时,NH4^+作为反硝化的无机电子供体,NO2^-作为电子受体,生成氮气,这一过程称为厌氧氨氧化。目前已经发现了3种厌氧氨氧化菌(Brocadia anammoxidans,Kuenenia stuttgartiensis,Scalindua sorokinii);对厌氧氨氧化菌的细胞色素、营养物质、抑制物、结构特征和生化反应机理的研究表明,厌氧氨氧化菌具有多种代谢能力。基于部分硝化至亚硝酸盐,然后与氨一起厌氧氨氧化,以及厌氧氨氧化菌与好氧氨氧化菌或甲烷菌的协同耦合作用,提出了几种生物脱氮的新工艺(ANAMMOX、SHARON—ANAMMOX、CANON和甲烷化与厌氧氨氧化耦合工艺)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号