首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1493篇
  免费   28篇
  国内免费   67篇
  2023年   5篇
  2022年   10篇
  2021年   12篇
  2020年   19篇
  2019年   23篇
  2018年   19篇
  2017年   18篇
  2016年   13篇
  2015年   17篇
  2014年   42篇
  2013年   69篇
  2012年   28篇
  2011年   159篇
  2010年   30篇
  2009年   116篇
  2008年   84篇
  2007年   51篇
  2006年   29篇
  2005年   48篇
  2004年   44篇
  2003年   41篇
  2002年   32篇
  2001年   25篇
  2000年   36篇
  1999年   32篇
  1998年   43篇
  1997年   34篇
  1996年   23篇
  1995年   44篇
  1994年   55篇
  1993年   50篇
  1992年   45篇
  1991年   52篇
  1990年   57篇
  1989年   26篇
  1988年   16篇
  1987年   17篇
  1986年   17篇
  1985年   20篇
  1984年   13篇
  1983年   6篇
  1982年   11篇
  1981年   8篇
  1980年   7篇
  1979年   11篇
  1978年   5篇
  1977年   8篇
  1976年   4篇
  1973年   4篇
  1972年   3篇
排序方式: 共有1588条查询结果,搜索用时 15 毫秒
991.
The performance of an anaerobic hybrid reactor (AHR) for treating penicillin-G wastewater was investigated at the ambient temperatures of 30-35 °C for 245 days in three phases. The experimental data were analysed by adopting an adaptive network-based fuzzy inference system (ANFIS) model, which combines the merits of both fuzzy systems and neural network technology. The statistical quality of the ANFIS model was significant due to its high correlation coefficient R2 between experimental and simulated COD values. The R2 was found to be 0.9718, 0.9268 and 0.9796 for the I, II and III phases, respectively. Furthermore, one to one correlation among the simulated and observed values was also observed. The results showed the proposed ANFIS model was well performed in predicting the performance of AHR.  相似文献   
992.
Xu M  Wen X  Yu Z  Li Y  Huang X 《Bioresource technology》2011,102(10):5617-5625
Anaerobic membrane bioreactor and online ultrasonic equipment used to enhance membrane filtration were coupled to form a hybrid system (US-AnMBR) designed for long-term digestion of waste activated sludge. The US-AnMBR was operated under volatile solids loading rates of 1.1-3.7 gVS/L·d. After comprehensive studies on digestion performance and membrane fouling control in the US-AnMBR, the final loading rate was determined to be 2.7 gVS/L·d with 51.3% volatile solids destruction. In the US-AnMBR, the improved digestion was due to enhanced sludge disintegration, as indicated by soluble matter comparison in the supernatant and particle size distribution in the digested sludge. Maximum specific methanogenic activity revealed that ultrasound application had no negative effect on anaerobic microorganisms. Furthermore, implementing ultrasound effectively controlled membrane fouling and successfully facilitated membrane bioreactor operation. This lab-scale study demonstrates the potential feasibility and effectiveness of setting up a US-AnMBR system for sludge digestion.  相似文献   
993.
This study focuses on the effects of different carbon supplements on biological phosphorus removal in the optonics and semiconductor industrial wastewater treatment. Experimental results demonstrate that the addition of a carbon source (glucose, acetate, and digester supernatant) improved phosphorus removal effectively. When the COD/P ratios were controlled in the range of 18-20 (using glucose and supernatant as supplement), the acclimated sludge showed more than 98% removal of phosphorus. In addition, different organic carbons induce dissimilar behavior in anaerobic release and aerobic uptake of phosphorus. The glucose supplement induces significant phosphorus release in anaerobic phase and then an increased phosphorus uptake in aerobic phase. The released phosphorus descended in anaerobic phase when acetate and supernatant were added. There was a good linear relationship of first order reaction between initial COD concentration and specific substrate utilization rate in anaerobic phase.  相似文献   
994.
Zhang J  Wei Y  Xiao W  Zhou Z  Yan X 《Bioresource technology》2011,102(16):7407-7414
An anaerobic baffled reactor with four compartments (C1-C4) was successfully used for treatment of acetone-butanol-ethanol fermentation wastewater and methane production. The chemical oxygen demand (COD) removal efficiency was 88.2% with a CH4 yield of 0.25 L/(g CODremoved) when organic loading rate (OLR) was 5.4 kg COD m−3 d−1. C1 played the most important role in solvents (acetone, butanol and ethanol) and COD removal. Community structure of C2 was similar to that in C1 at stage 3 with higher OLR, but was similar to those in C3 and C4 at stages 1-2 with lower OLR. This community variation in C2 was consistent with its increased role in COD and solvent removal at stage 3. During community succession from C1 to C4 at stage 3, abundance of Firmicutes (especially OTUs ABRB07 and ABRB10) and Methanoculleus decreased, while Bacteroidetes and Methanocorpusculum became dominant. Thus, ABRB07 coupled with Methanoculleus and/or acetogen (ABRB10) may be key species for solvents degradation.  相似文献   
995.
This study compared the PHAs production behavior of sludges from the anaerobic and oxic phases of an enhanced biological phosphorus removal (EBPR) system. This was accomplished by using the kinetics and stoichiometric coefficients obtained from aerobic batch tests to evaluate the performance of these two sludges. Experimental results indicated that the metabolic behavior of the sludges for PHAs production depend significantly on the operating sludge retention time (SRT) of the EBPR system. The oxic sludge with 5 days of SRT exhibited better PHAs production performance than anaerobic sludge. Conversely, the anaerobic sludge with 15 days of SRT had superior PHAs production capability compared to oxic sludge. These comparisons suggest that whether anaerobic or oxic sludge should be employed for PHAs production depends mainly on the operating SRT of the EBPR system.  相似文献   
996.
The goal of the study was to determine the effectiveness of nitrification and denitrification and the kinetics of ammonia removal from a mixture of wastewater and anaerobic sludge digester supernatant in an SBR at limited oxygen concentration. In addition, the COD removal efficiency and sludge production were assessed.In the SBR cycle alternating aerobic and anaerobic phases occurred; in the aeration phase the dissolved oxygen (DO) concentration was below 0.7 mg O2/L. The low DO concentration did not inhibit ammonia oxidation-nitrification and the efficiency was ca. 96-98%. However, a relatively high COD concentration in the effluent was detected. The values of Km and Vmax, calculated from the Michaelis-Menten equation, were 43 mg N-NH4/L and 15.64 mg N-NH4/L h, respectively. Activated sludge production was almost stable (0.62-0.66 g MLVSS/g COD). A high net biomass production resulted from a low specific biomass decay rate of 0.0015 d−1.  相似文献   
997.
This paper investigates near infra-red spectroscopy (NIRS) as an indirect and rapid method to assess the biochemical methane potential (BMP) of meadow grasses. Additionally analytical methods usually associated with forage analysis, namely, the neutral detergent fibre assay (NDF), and the in-vitro organic matter digestibility assay (IVOMD), were also tested on the meadow grass samples and the applicability of the models in predicting the BMP was studied. Based on these, regression models were obtained using the partial least squares (PLS) method. Various data pre-treatments were also applied to improve the models. Compared to the models based on the NDF and IVOMD predictions of BMP, the model based on the NIRS prediction of BMP gave the best results. This model, with data pre-processed by the mean normalisation method, had an R2 value of 0.69, a root mean square error of prediction (RMSEP) of 37.4 and a residual prediction deviation (RPD) of 1.75.  相似文献   
998.
The feasibility of sewage sludge co-digestion using intermediate waste generated inside a wastewater treatment plant, i.e. trapped grease waste from the dissolved air flotation unit, has been assessed in a continuous stirred lab reactor operating at 35 °C with a hydraulic retention time of 20 days. Three different periods of co-digestion were carried out as the grease waste dose was increased. When the grease waste addition was 23% of the volatile solids fed (organic loading rate 3.0 kgCOD m−3 d−1), an increase in methane yield of 138% was reported. Specific activity tests suggested that anaerobic biomass had adapted to the co-substrate. The adapted inoculum showed higher acetoclastic methanogenic and β-oxidation synthrophic acetogenic activities but lower hydrogenotrophic methanogenic activity. The results indicate that a slow increase in the grease waste dose could be a strategy that favours biomass acclimation to fat-rich co-substrate, increases long chain fatty acid degradation and reduces the latter’s inhibitory effect.  相似文献   
999.
Lai HT  Wang TS  Chou CC 《Bioresource technology》2011,102(8):5017-5023
In this study, the effects of natural, visible and ultraviolet lights, microbial activities and aerobic and anaerobic conditions on degradation of four different sulfonamide antibiotics (SAs) were studied. Water and sediment collected from a marine shrimp pond were examined and a factorial design was employed to evaluate the effects of selected parameters. The results showed that all the SAs in water and sediment had significant declines attributed to natural light and microbial activities. The half-lives (t1/2s) of SAs in non-sterile water and sediment samples under natural light were 2.0-15.0 and 0.7-7.3 days, respectively, and slowed to 2.9-62.9 and 6.9-85.6 days after sterilized. Moreover, the declines of SAs were significantly faster under ultraviolet than visible light with 36.5-70.9% shorter t1/2s. Anaerobic condition was also effective on declines of SAs in sediment. Both sulfate-reducing and methanogenic microbes were directly involved in the decline of SDM, and indirectly contributed to SMX declines.  相似文献   
1000.
Electrolysis-enhanced anaerobic digestion of wastewater   总被引:1,自引:0,他引:1  
This study demonstrates enhanced methane production from wastewater in laboratory-scale anaerobic reactors equipped with electrodes for water electrolysis. The electrodes were installed in the reactor sludge bed and a voltage of 2.8-3.5 V was applied resulting in a continuous supply of oxygen and hydrogen. The oxygen created micro-aerobic conditions, which facilitated hydrolysis of synthetic wastewater and reduced the release of hydrogen sulfide to the biogas. A portion of the hydrogen produced electrolytically escaped to the biogas improving its combustion properties, while another part was converted to methane by hydrogenotrophic methanogens, increasing the net methane production. The presence of oxygen in the biogas was minimized by limiting the applied voltage. At a volumetric energy consumption of 0.2-0.3 Wh/LR, successful treatment of both low and high strength synthetic wastewaters was demonstrated. Methane production was increased by 10-25% and reactor stability was improved in comparison to a conventional anaerobic reactor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号