首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2620篇
  免费   89篇
  国内免费   169篇
  2023年   15篇
  2022年   18篇
  2021年   23篇
  2020年   33篇
  2019年   48篇
  2018年   44篇
  2017年   33篇
  2016年   46篇
  2015年   50篇
  2014年   63篇
  2013年   103篇
  2012年   45篇
  2011年   95篇
  2010年   42篇
  2009年   87篇
  2008年   84篇
  2007年   114篇
  2006年   111篇
  2005年   116篇
  2004年   87篇
  2003年   109篇
  2002年   97篇
  2001年   75篇
  2000年   82篇
  1999年   64篇
  1998年   83篇
  1997年   64篇
  1996年   72篇
  1995年   77篇
  1994年   82篇
  1993年   86篇
  1992年   74篇
  1991年   54篇
  1990年   74篇
  1989年   59篇
  1988年   63篇
  1987年   58篇
  1986年   63篇
  1985年   45篇
  1984年   52篇
  1983年   30篇
  1982年   37篇
  1981年   30篇
  1980年   27篇
  1979年   17篇
  1978年   14篇
  1977年   10篇
  1976年   7篇
  1975年   6篇
  1973年   3篇
排序方式: 共有2878条查询结果,搜索用时 15 毫秒
991.
研究了铜离子-半胱氨酸配合物的合成方法,探讨了合成工艺的主要影响因素,确定了原料配比,pH值,最佳反应时间及温度,采用X射线衍射光谱对配合物进行表征,结果表明铜离子能与半胱氨酸形成配合物。  相似文献   
992.
A nitrate transporter gene, named DsNRT2.1 (GeneBank accession number AY621079), from Dunaliella salina has been cloned by screening a cDNA library, which was constructed with mRNAs from D. salina after 60 min treatment with 5 mM nitrate, with a 342 bp NRT2 cDNA fragment from D. salina as a probe. DsNRT2.1 exhibits sequence similarity to those known nitrate transporters of the NRT2 family. A hydrophobicity blot indicated that DsNRT2.1 belongs to the major facilitator superfamily (MFS). Northern analysis showed that an mRNA species of 1.9 kb can be rapidly induced by NO 3, but not by NH+ 4. Northern analysis also showed that NaCl could significantly increase the expression of DsNRT2.1.  相似文献   
993.
冬小麦生育期农田尺度下土壤硝态氮淋失动态的数值模拟   总被引:7,自引:1,他引:6  
马军花  任理 《生态学报》2004,24(10):2289-2301
在北京通州区永乐店田间试验的基础上 ,假设土壤由一系列不发生相互作用的一维土柱组成 ,根据实测的土壤有机质含量 ,假定土壤有机氮的矿化作用速率常数 (零级动力学 )和有机质含量成正比 ,运用 HYDRUS- 1D软件 ,分别就考虑和不考虑土壤有机氮的矿化速率的空间变异性这两种方案 ,对 2 0 0 0~ 2 0 0 1年冬小麦生长条件下农田尺度土壤氮素转化和硝态氮淋失规律进行了数值分析。两种方案的模拟结果表明 :考虑和不考虑土壤有机氮矿化速率的空间变异性对剖面 2 5 0 cm埋深处硝态氮淋失量的影响很小 ,其差异主要在于前者对土壤氮素的矿化量、固持及反硝化量、作物吸氮量的影响更大 ,其空间变异性高于不考虑矿化速率时的结果。剖面 2 5 0 cm埋深处平均的土壤水渗透量和累积硝态氮淋失量分别为 2 .2 5 mm、0 .0 0 984 m g/cm2 ,变异系数大于 1.4 6 ,属于强变异性。对模拟结果进行地统计学分析 ,结果表明 :剖面 2 5 0 cm埋深处的土壤水渗透量和硝态氮淋失量的半方差函数为纯块金形式 ,在空间上表现为相互独立。考虑有机氮矿化速率空间变异性时的土壤氮素净转化量、吸氮量均可用球状模型描述 ,其变程与土壤有机质含量的变程接近 ,约为 4 .7m;而不考虑有机氮矿化速率空间变异性时的土壤氮素净转化量用线性无基台值  相似文献   
994.
Oxidation of high-strength ammonium wastewater can lead to exceptionally high nitrite concentrations; therefore, the effect of high nitrite concentration (> 400 mM) was studied using an ammonium-oxidizing enrichment culture in a batch reactor. Ammonium was fed to the reactor in portions of 40-150 mM until ammonium oxidation rates decreased and finally stopped. Activity was restored by replacing half of the medium, while biomass was retained by a membrane. The ammonium-oxidizing population obtained was able to oxidize ammonium at nitrite concentrations of up to 500 mM. The maximum specific oxidation activity of the culture in batch test was about 0.040 mmol O(2)g(-1)proteinmin(-1) and the K(s) value was 1.5 mM ammonium. In these tests, half of the maximum oxidation activity was still present at a concentration of 600 mM nitrite and approximately 10% residual activity could still be measured at 1200 mM nitrite (pH 7.4), or as a free nitrous acid (FNA) concentration of 6.6 mg l(-1). Additional experiments showed that the inhibition was caused by nitrite and not by the high sodium chloride concentration of the medium. The added ammonium was mainly converted into nitrite and no nitrite oxidation was observed. In addition, gaseous nitrogen compounds were detected and mass balance calculations revealed a nitrogen loss of approximately 20% using this system. Phylogenetic analyses of 16S rRNA and ammonium monooxygenase (amoA) genes of the obtained enrichment culture showed that ammonium-oxidizing bacteria of the Nitrosomonas europaea/Nitrosococcus mobilis cluster dominated the two clone libraries. Approximately 25% of the 16S rRNA clones showed a similarity of 92% to Deinococcus-like organisms. Specific fluorescence in situ hybridization (FISH) probes confirmed that these microbes comprised 10-20% of the microbial community in the enrichment. The Deinococcus-like organisms were located around the Nitrosomonas clusters, but their role in the community is currently unresolved.  相似文献   
995.
Miller AJ  Smith SJ 《Annals of botany》2008,101(4):485-489
BACKGROUND AND AIMS: question of whether homeostasis occurs for some nutrients and, if so, what are the consequences for how plants sense their nutrient status. Particularly for nitrate, this controversy has focused on the methods used and the cellular pools which they measure. Cytoplasm and cytosol have been distinguished and it has been suggested that two ranges of nitrate values can be separated depending on whether the method separates the pools found in organelles. SCOPE: The present study defines homeostasis of nutrient ions and discusses how whole organ averaging techniques can hide important cellular differences that can help to explain some of the discrepancies between results reported by various methods. These results are considered in relation to a possible role in signalling nutrient status, and have relevance to other averaging techniques such as the use of 'omics' technologies.  相似文献   
996.
The red tide forming dinoflagellate genus Cochlodinium appears to be expanding globally, as well as blooming and/or causing more economic losses within its previously reported geographic distribution. Despite the widespread occurrence of this organism in the Pacific, Atlantic, and Indian oceans, relatively few studies of its ecophysiology have been conducted. Here we summarize the ecophysiological characteristics through both a literature review and by assessing recent bloom events in Monterey Bay, CA, USA. Using this comparative approach, we identify the basic characteristics of this organism: Cochlodinium is found in both warm and cool (11–30 °C) waters in the western and eastern Pacific, respectively, at moderate salinities (30–34). The production of pelagic vegetative seed banks or benthic seed beds by this organism and ability to survive ballast water transport likely facilitate its ability to colonize and establish itself in new habitats. It is a strong vertical migrator capable of utilizing both inorganic and organic nitrogen sources as well as mixotrophy and may be associated with moderate nutrient loading. These characteristics provide Cochlodinium with an adaptive capability conducive to rapid colonization of newly opened ecological niches, which may partially explain the apparent global expansion of its geographic range and bloom frequency.  相似文献   
997.
Rice has a preference for uptake of ammonium over nitrate and can use ammonium-N efficiently. Consequently, transporters mediating ammonium uptake have been extensively studied, but nitrate transporters have been largely ignored. Recently,some reports have shown that rice also has high capacity to acquire nitrate from growth medium, so understanding the nitrate transport system in rice roots is very important for improving N use efficiency in rice. The present study identified four putative NRT2 and two putative NAR2 genes that encode components of the high-affinity nitrate transport system (HATS) in the rice (Oryza sativa L. subsp, japonica cv. Nipponbare) genome. OsNRT2.1 and OsNRT2.2 share an identical coding region sequence, and their deduced proteins are closely related to those from monocotyledonous plants. The two NAR2 proteins are closely related to those from mono-cotyledonous plants as well. However, OsNRT2.3 and OsNRT2.4 are more closely related to Arabidopsis NRT2 proteins. Relative quantitative reverse tranecdption-polymerase chain reaction analysis showed that all of the six genes were rapidly upregulated and then downregulated in the roots of N-starved rice plants after they were re-supplied with 0.2 mM nitrate, but the response to nitrate differed among gene members.The results from phylogenetic tree, gene structure and expression analysis implied the divergent roles for the individual members of the rice NRT2 and NAR2 families. High-affinity nitrate influx rates associated with nitrate induction in rice roots were investigated and were found to be regulated by external pH. Compared with the nitrate influx rates at pH 6.5, alkaline pH (pH 8.0) inhibited nitrate Influx, and acidic pH (pH 5.0) enhanced the nitrate influx In I h nitrate induced roots, but did not significantly affect that in 4 to 8 h nitrate induced roots.  相似文献   
998.
Lead (Pb2+) is a well-known highly toxic element. The mechanisms of the Pb2+ toxicity are not well understood for nitrogen metabolism of higher plants. In this paper, we studied the effects of various concentrations of PbCl2 on the nitrogen metabolism of growing spinach. The experimental results showed that Pb2+ treatments significantly decreased the nitrate nitrogen absorption and inhibited the activities of nitrate reductase, glutamate dehydrogenase, glutamine synthase, and glutamic–pyruvic transaminase of spinach, and inhibited the synthesis of organic nitrogen compounds such as protein and chlorophyll. However, Pb2+ treatments increased the accumulation of ammonium nitrogen in spinach cell. It implied that Pb2+ could inhibit inorganic nitrogen to be translated into organic nitrogen in spinach, thus led to the reduction in spinach growth.  相似文献   
999.
1000.
Improvement in fertilizer use efficiency is a key aspect for achieving sustainable agriculture in order to minimize costs, greenhouse gas emissions, and pollution from nutrient run‐off. To optimize root architecture for nutrient uptake and efficiency, we need to understand what the roots encounter in their environment. Traditional methods of nutrient sampling, such as salt extractions can only be done at the end of an experiment, are impractical for sampling locations precisely and give total nutrient values that can overestimate the nutrients available to the roots. In contrast, microdialysis provides a non‐invasive, continuous method for sampling available nutrients in the soil. Here, for the first time, we have used microCT imaging to position microdialysis probes at known distances from the roots and then measured the available nitrate and ammonium. We found that nitrate accumulated close to roots whereas ammonium was depleted demonstrating that this combination of complementary techniques provides a unique ability to measure root‐available nutrients non‐destructively and in almost real time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号