首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2620篇
  免费   89篇
  国内免费   169篇
  2023年   15篇
  2022年   18篇
  2021年   23篇
  2020年   33篇
  2019年   48篇
  2018年   44篇
  2017年   33篇
  2016年   46篇
  2015年   50篇
  2014年   63篇
  2013年   103篇
  2012年   45篇
  2011年   95篇
  2010年   42篇
  2009年   87篇
  2008年   84篇
  2007年   114篇
  2006年   111篇
  2005年   116篇
  2004年   87篇
  2003年   109篇
  2002年   97篇
  2001年   75篇
  2000年   82篇
  1999年   64篇
  1998年   83篇
  1997年   64篇
  1996年   72篇
  1995年   77篇
  1994年   82篇
  1993年   86篇
  1992年   74篇
  1991年   54篇
  1990年   74篇
  1989年   59篇
  1988年   63篇
  1987年   58篇
  1986年   63篇
  1985年   45篇
  1984年   52篇
  1983年   30篇
  1982年   37篇
  1981年   30篇
  1980年   27篇
  1979年   17篇
  1978年   14篇
  1977年   10篇
  1976年   7篇
  1975年   6篇
  1973年   3篇
排序方式: 共有2878条查询结果,搜索用时 31 毫秒
61.
Summary Four-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) saplings planted in pots with a sand and peat mix (11) were fertilized at the rate of 200 kg N/ha of (15NH2)2CO (U-15),15NH4NO3 (A-15) and NH4 15NO3(An-15). They were placed in a shadehouse and watered regularly to maintain soil moisture at field capacity over periods of one and two years. Quantity of15N in foliage generally increased from old to current growth, irrespective of the nitrogen source. Utilization of15N fertilizers by saplings after the first and second growing seasons following fertilization was greatest with nitrate labelled ammonium nitrate AN-15, and nearly equal for urea U-15 and ammonium labelled ammonium nitrate A-15. The soil immobilized more fertilizer nitrogen-15 from U-15 and A-15 than from AN-15. Data from the present study, in which leaching losses of fertilizer were minimized, demonstrated that in terms of nitrogen uptake by the saplings the nitrate fertilizer was superior to ammonium fertilizer.  相似文献   
62.
Summary Sixteen slow-growing strains of rhizobia (15 cowpea rhizobia and oneR. japonicum) were examined to determine the effects of carbon and nitrogen sources on acid/alkali production in culture media. We found that the pH changes of the medium were more influenced by nitrogen sources than carbon sources (with the exception of ribose). When ammonium sulphate was used as a nitrogen source, all the cowpea rhizobia strains produced acid. When yeast-extract was used as a nitrogen source, however, a heterogenous pattern for acid/alkali production was found. The majority of the strains produced alkali from nitrate, glutamate and urea irrespective of carbon sources and acid from ribose irrespective of nitrogen sources.  相似文献   
63.
Summary Following the addition of 0–75 mole N g–1 as ammonium chloride or ammonium sulphate to a sandy loam soil the nitrate formed was measured daily for a period of 15–17 days. The nitrate produced as a function of time was described using the Monod equation for microbial growth. An optimisation technique is described for obtaining, from the nitrification time course data, the maximum specific growth rate, the affinity constantant and an index limited by the concentration of ammonium in soil solution. Additions of more than 7.3 moles N g–1 soil as ammonium chloride were found to inhibit nitrification. The inhibition was interpreted as being caused by osmotic pressure or by chloride ion. A similar effect was not found with ammonium sulphate, because the salt concentration in the soil solution was restricted by the precipitation of calcium sulphate. The model developed was capable of accounting for nitrate production in the soil under non-steady state conditions of substrate concentrations and nitrifier biomass.  相似文献   
64.
Investigations of the uptake of ammonium (NH 4 + ) by Rhodopseudomonas capsulata B100 supported the presence of an NH 4 + transport system. Experimentally NH 4 + was determined by electrode or indophenol assay and saturation kinetics were observed with two apparent K m's of 1.7 M and 11.1 M (pH 6.8, 30°) and a V max at saturation of 50–60 nmol/min·mg protein. The optimum pH and temperature were 7.0 and 33° C, respectively. The Q10 quotient was calculated to be 1.9 at 100 M NH 4 + , indicating enzymatic involvement. In contrast to the wild type, B100, excretion of NH 4 + , not uptake, was observed in a glutamine auxotroph, R. capsulata G29, which is derepressed for nitrogenase and lacks glutamine synthetase activity. G29R1, a revertant of G29, also took up NH 4 + at the same rate as wild type and had fully restored glutamine synthetase activity. Partially restored derivatives, G29R5 and G29R6, grew more slowly than wild type on NH 4 + as the nitrogen source, remained derepressed for nitrogenase in the presence of NH 4 + , and displayed rates of NH 4 + uptake in proportion to their glutamine synthetase activity. Ammonium uptake and glutamine synthetase activity were also restored in R. capsulata G29 exconjugants which had received the plasmid pPS25, containing the R. capsulata glutamine synthetase structural gene. These data suggest that NH 4 + transport is tightly coupled to assimilation.Abbreviations used CHES cyclohexylaminoethanesulfonic acid - GS glutamine synthetase - SDS sodium dodecylsulfate  相似文献   
65.
Abstract Chenopodium album L. plants, grown under controlled environmental conditions on different levels of soil nitrate, produced seeds with proportionately different NO?3 contents. Regardless of the endogenous NO?3 content, few seeds germinated in water or upon treatment with KNO3. Ethylene promoted germination, and the extent of germination was positively correlated with the endogenous seed NO?3 content. Combined application of ethylene and KNO3 in the dark had a synergistic effect on NO?3 -deficient seed. The synergism between ethylene and KNO3 was attributable to the NO?3 moiety of the nitrate salt. Ethylene and light showed moderate synergism in seeds with low or high endogenous nitrate. Addition of nitrate, however, masked the interaction between ethylene and light. Gibberellic acid4+7 (GA4+7) or red light, each alone or combined with KNO3, had little effect on germination. When applied together in the dark, ethylene and GA4+7 synergistically enhanced the germination of NO?3-deficient seed. The combined effects of the two hormones on this seed were further enhanced by the addition of KNO3. There was no synergism between ethylene and GA4+7 in NO?3-rich seed. These interactions among GA4+7, ethylene and KNO3 were not affected by light. The results confirm and further elaborate our earlier finding that the sensitivity of C. album seeds to ethylene may depend on nitrate availability.  相似文献   
66.
Abstract Growth-chamber cultivated Raphanus plants accumulate nitrate during their vegetative growth. After 25 days of growth at a constant supply to the roots of 1 mol m?3 (NO?3) in a balanced nutrient solution, the oldest leaves (eight-leaf stage) accumulated 2.5% NO?3-nitrogen (NO3-N) in their lamina, and almost 5% NO3-N in their petioles on a dry weight basis. This is equivalent to approximately 190 and 400 mol?3 m?3 concentration of NO?3 in the lamina and the petiole, respectively, as calculated on a total tissue water content basis. Measurements were made of root NO?3 uptake, NO?3 fluxes in the xylem, nitrate uptake by the mesophyll cells, and nitrate reduction as measured by an in vivo test. NO?3 uptake by roots and mesophyll cells was greater in the light than in the dark. The NO?3 concentration in the xylem fluid was constant with leaf age, but showed a distinct daily variation as a result of the independent fluxes of root uptake, transpiration and mesophyll uptake. NO?3 was reduced in the leaf at a higher rate in the light than in the dark. The reduction was inhibited at the high concentrations calculated to exist in the mesophyll vacuoles, but reduction continued at a low rate, even when there was no supply from the incubation medium. Sixty-four per cent of the NO?3 influx was turned into organic nitrogen, with the remaining NO?3 accumulating in both the light and the dark.  相似文献   
67.
The photosynthetic performance and nitrogen utilization of Lemna gibba L. G3 adapted to limited nitrogen supply was studied. The plants were adapted to two levels of nitrogen limitation where the nitrogen addition rates were calculated to sustain relative growth rates (RGR) of 0.15 day?1 and 0.25 day?1, respectively. The photosynthetic performance of these cultures was compared to nitrogen-sufficient cultures with an average RGR of 0.32 day?1. Plants transferred from nitrogen-sufficient conditions attained RGR values corresponding to the nitrogen addition rates after 6 to 10 days. Light-saturated net photosynthesis declined during adaptation according to the drop in growth rate, and a concomitant decrease in the respiration rate was recorded. The efficiency of net photosynthesis on a dry weight basis increased with increased nitrogen supply, whereas it was the same in all cultures when expressed on a chlorophyll basis. The light compensation point was unaffected by the nitrogen regime. Limited nitrogen supply resulted in an increased proportion of dry matter in the roots, which led to decreased leaf area ratios. The net assimilation rates also decreased, but not to the same extent as the leaf area ratios. Growth-limiting amounts of nitrogen were added to the cultures once daily, and the net influx of N was higher than the requirement for N, also in adapted cultures with a steady growth rate. This resulted in transient, periodic fluctuations in the NO3?, NH4+ and amino acid pools. Also the rates of NO3? reduction and NH4+ assimilation fluctuated as did the amino acid assimilation which paralleled NH4+ assimilation. The role of flux rates over the plasmalemma and tonoplast for control of nitrogen assimilation rates are discussed.  相似文献   
68.
Diurnal variations of in vitro and in vivo (intact tissue assay) nitrate reductase (EC 1.6.6.1) activity and stability were examined in leaves of wheat ( Triticum aestivum L. cv. Runar), oat ( Avcna saliva L. cv. Mustang) and barley ( Hordeum vulgure L. cv. Agneta and cv. Gunillu). Nitrate reductase activity was generally higher for wheat than for oat and barley. However, the diurnal variations of nitrate reductase activity and stability were principally the same for all species, e.g. the high activity during the photoperiod was associated with low stability. All species showed a rapid (30-60 min) increase in the in vitro and in vivo activity when the light was switched on. When light was switched off the in vitro activity decreased rapidly whereas decrease in in vivo activity was slower. These experiments support the hypothesis that an activation/ deactivation mechanism is involved in the regulation of diurnal variations in nitrate reductase activity. Red light enhanced nitrate reductase activity in etiolated wheat and barley leaves. In green leaves, however, the daily increase in nitrate reductase activity was not induced by a brief red light treatment. Indications of different regulation mechanisms for the diurnal variations of nitrate reductase activity among the cereals were not found.  相似文献   
69.
Measurements of uptake rates, intracellular nitrogen pools, and other key intracellular constituents were made during exponential growth in Skeletonema costatum (Grev.) Cleve under varying pH levels. An understanding of the overall effects of extracellular pH on the above mentioned cellular parameters is crucial in order to ascertain the degree to which pH must be regulated and monitored in laboratory experiments with marine phytoplankton.It was found that uptake rates and intracellular pool sizes of NO?3 were directly influenced by the extracellular pH level, whereas, other cellular compounds remained relatively unchanged. Therefore, nitrogen uptake and intracellular nitrogen storage are dependent on key H+ and OH? ion transport mechanisms that are associated with phytoplankton metabolism. These findings reiterate the fact that investigators examining nitrogen uptake and assimilatory mechanisms in marine phytoplankton must be conscious of cellular H + and OH? fluxes that contribute to intracellular pH regulation and changes in extracellular pH levels, both of which interact to affect phytoplankton metabolic processes.  相似文献   
70.
The general hypothesis that morphological, physiological, and ecological adaptations of macro algal functional-form groups can be related to the level of disturbance encountered in a natural environment was examined. Two articulated calcareous coralline algae (Amphiroa van-bosseae Lemoine, 24% cover and Corallina frondescens Post. & Rupr. 20%) and one non-articulated coralline alga (Lithophyllum sp., 16%), all late-successional predation-tolerant strategists, comprise most of the community cover on stable bedrock substrata at Punta Las Cuevitas, Sonora, Mexico. Conversely, Ulva rigida C. ag. (26% cover) and a ralfsioid crust (23%), shows to be early-successional opportunistic strategists, cover more of the disturbed boulder habitat. Porolithon sonorense Daws., a stress-tolerant strategist, is uniquely abundant on both substratum types (13% cover on boulders, 10% on bedrock). The sheet-like and filamentous algae, prevalent in the temporally unstable habitat, generally show greater productivity (>2×) than the thicker and calcareous forms conspicuous in the more constant environment. It appears that selection for delicate thalli with high productivities, as well as selection for tougher morphologies having lower photosynthetic rates due to greater proportions of structural tissues, are widespread, divergent evolutionary forces among marine algae. Experiments with captive sea urchins (Echinometra vanbrunti Agassiz), in conjunction with fish-preference data published for some of the same algae studied here, offer strong support for the functional-form model. Parrotfishes, rudderfishes, surgeonfishes, damselfishes and E. vanbrunti, in the Gulf of California, preferentially feed on delicate, early-successional, sheet-like, and filamentous algae, while rejecting or ignoring the more structured, late-successional and calcareous algae. There is no significant (P > 0.05) gradation in calorific content between the first four of the six functional groups (i.e., Sheet-, Filamentous-, Coarsely Branched- and Thick Leathery-Groups), but the mean value for these fleshy forms (2.6 kcal · g ash-free dry wt?1) is significantly greater than that for the last two groups (0.3 kcal, Jointed Calcareous- and Crustose-Groups). The approach used in this study demonstrates a realistic technique for predicting macrophyte community composition from knowledge of the disturbance levels in a given habitat or the reverse. The form group-disturbance relationship has important implications for future biological monitoring of rocky-inter-tidal and subtidal systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号