首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   26篇
  国内免费   2篇
  2023年   6篇
  2022年   8篇
  2021年   13篇
  2020年   6篇
  2019年   11篇
  2018年   7篇
  2017年   6篇
  2016年   3篇
  2015年   11篇
  2014年   26篇
  2013年   28篇
  2012年   19篇
  2011年   28篇
  2010年   19篇
  2009年   11篇
  2008年   15篇
  2007年   12篇
  2006年   20篇
  2005年   17篇
  2004年   8篇
  2003年   12篇
  2002年   11篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有368条查询结果,搜索用时 31 毫秒
31.
Exposure of the lung to lipopolysaccharide (LPS) or silica results in an activation of alveolar macrophages (AMs), recruitment of polymorphonuclear leukocytes (PMNs) into bronchoalveolar spaces, and the production of free radicals. Nitric oxide (NO) is one of the free radicals generated by bronchoalveolar lavage (BAL) cell populations following either LPS or silica exposure. The purpose of the present study was to assess the relative contributions of AMs and PMNs to the amounts of NO produced by BAL cells following intratracheal (IT) instillation of either LPS or silica. Male Sprague Dawley rats (265-340 g body wt.) were given LPS (10 mg/100 g body wt.) or silica (5 mg/100 g body wt.). BAL cells were harvested 18-24 h post-IT and enriched for AMs or PMNs using density gradient centrifugation. Media levels of nitrate and nitrite (NOx; the stable decomposition products of NO) were then measured 18 h after ex vivo culture of these cells. Following IT exposure to either LPS or silica, BAL cell populations were approximately 20% AMs and approximately 80% PMNs. After density gradient centrifugation of BAL cells from LPS- or silica-treated rats, cell fractions were obtained which were relatively enriched for AMs (approximately 60%) or PMNs (approximately 90%). The amounts of NOx produced by the AM-enriched fractions from LPS- or silica-treated rats were approximately 2-4-fold greater than that produced by the PMN-enriched fractions. Estimations of the relative contribution of AMs or PMNs to the NOx produced indicated that: (i) following LPS treatment, 75%-89% of the NOx was derived from AMs and 11%-25% from PMNs; and (ii) following silica treatment, 76%-100% of the NOx was derived from AMs and 0-24% from PMNs. Immunohistochemistry for inducible NO synthase on lung tissue sections supported these findings. We conclude that AMs are the major source of the NO produced by BAL cells during acute pulmonary inflammatory responses to LPS or silica.  相似文献   
32.
The uptake of 3H-labeled choline by a suspension of isolated type II epithelial cells from rat lung has been studied in a Ringer medium. Uptake was linear for 4 min at both 0.1 μm and 5.0 μm medium choline; at 5 μm, only 10% of the label was recovered in a lipid fraction. Further experiments were conducted at the low concentration (0.1 μm), permitting characterization of the properties of high-affinity systems. Three fractions of choline uptake were detected: (i) a sodium-dependent system that was totally inhibited by hemicholinium-3 (HC-3); (ii) a sodium-independent uptake, when Na+ was replaced by Li+, K+ or Mg2+, inhibited by HC-3; (iii) a residual portion persisting in the absence of Na+ and unaffected by HC-3. Choline uptake was sigmoidally related to the medium Na+ concentration. Kinetic properties of the uptake of 0.1 μm 3H-choline in the presence and absence of medium Na+ were examined in two ways. (a) Inhibition by increasing concentrations of unlabeled choline (0.5–100 μm) was consistent with the presence of two Michaelis-Menten-type systems in the presence of Na+; a Na+-dependent portion (a mean of 0.52 of the total) had a K m for choline of 1.5 μm while K m in the absence of Na+ (Li+ substituting) was 18.6 μm. (b) Inhibition by HC-3 (0.3–300 μm) gave Ki values of 1.7 μm and 5.0 μm HC-3 for the Na+-dependent and -independent fractions. The apparent K m of the Na+-dependent uptake is lower than that reported previously for lung-derived cells and is in the range of the K m values reported for high-affinity, Na+-dependent choline uptake by neuronal cells. Received: 18 February 1997/Revised: 7 December 1997  相似文献   
33.
Acute lung injury (ALI) is a severe pulmonary disease that causes a high number of fatalities worldwide. Studies have shown that FoxA1 expression is upregulated during ALI and may play an important role in ALI by promoting the apoptosis of alveolar type II epithelial cells. However, the mechanism of FoxA1 overexpression in ALI is unclear. In this study, an in vivo murine model of ALI and alveolar type II epithelial cells injury was induced using lipopolysaccharide (LPS). LPS upregulated FoxA1 in the lung tissue of the in vivo ALI model and in LPS-challenged type II epithelial cells. In contrast, miR-17 was significantly downregulated in these models. After miR-17 antagomir injection, the expression of FoxA1 was significantly increased in ALI mice. MiR-17 mimics could significantly inhibit FoxA1 mRNA and protein expression, whereas the miR-17 inhibitor could significantly increase FoxA1 mRNA and protein expression in LPS-induced type II epithelial cells. Thus, our results suggest that the downregulation of miR-17 expression could lead to FoxA1 overexpression in ALI.  相似文献   
34.
Phosphoinositide 3-kinase-γ (PI3Kγ) has been identified to play the critical roles in inflammatory cells activation and recruitment in multiply inflammatory diseases and it promised to be a prospective target for relevant inflammatory diseases therapy. AS605240, a selective PI3Kγ inhibitor, has been proved effective on several inflammatory diseases. In this study, we investigated the protective effect of AS605240 on bleomycin-induced pulmonary fibrosis in rats. Our results showed that orally administration of AS605240 significantly prevented lung inflammation and reduced collagen deposition. AS605240 also inhibited augmented expression of TNF-α and IL-1β induced by bleomycin instillation. Moreover, the mRNA levels of TNF-α and IL-1β in lung were remarkably suppressed. Histological assessment found that AS605240 reduced the expression of TGF-β1 and prevented T lymphocytes infiltration to lung. Phospho-Akt level in inflammatory cells by blocking PI3Kγ was down-regulated and the inhibition of Akt phosphorylation was further confirmed by Western blot. Our findings illustrated that AS605240 was effective for preventing pulmonary fibrosis by suppressing inflammatory cells recruitment and production of inflammatory cytokines. These findings also suggest that PI3Kγ may be a useful target in treating inflammation diseases and AS605240 may represent a promising novel agent for the future therapy of pulmonary fibrosis.  相似文献   
35.
Fibrinogen-like protein 2 (FGL2)/fibroleukin has been reported to play a vital role in the pathogenesis of some critical inflammatory diseases by possessing immunomodulatory activity through the mediation of “immune coagulation” and the regulation of maturation and proliferation of immune cells. We observed upregulated FGL2 expression in alveolar macrophages from peripheral lungs of chronic obstructive pulmonary disease (COPD) patients and found a correlation between FGL2 expression and increased macrophage activation markers (CD11b and CD14). The role of FGL2 in the activation of macrophages was confirmed by the detection of significantly decreased macrophage activation marker (CD11b, CD11c, and CD71) expression as well as the inhibition of cell migration and inflammatory cytokine (IL-8 and MMP-9) production in an LPS-induced FGL2 knockdown human monocytic leukemia cell line (THP-1). Increased FGL2 expression co-localized with upregulated phosphorylated p38 mitogen-activated protein kinase (p38-MAPK) in the lung tissues from COPD patients. Moreover, FGL2 knockdown in THP-1 cells significantly downregulated LPS-induced phosphorylation of p38-MAPK while upregulating phosphorylation of c-Jun N-terminal kinase (JNK). Thus, we demonstrate that FGL2 plays an important role in macrophage activation in the lungs of COPD patients through MAPK pathway modulation.  相似文献   
36.
目的:检测LC3在肺泡Ⅱ型上皮细胞A549上的表达情况,及结核分枝杆菌刺激后对其表达的影响,探讨自噬在结核分枝杆菌感染上皮细胞中所起的作用。方法:体外培养肺泡Ⅱ型上皮细胞A549,在结核分枝杆菌感染A549细胞0h,24h分别提取RNA,采用RT-PCR的方法检测LC3mRNA的表达情况。采用凋亡坏死染色试剂盒在结核分枝杆菌感染24h后检测对照组,3-MA组,MTB组和3-MA+MTB组的细胞坏死情况。在结核分枝杆菌感染A549细胞4h,8h,16,24h采用Non-Radioactive Cytocity Assay的方法检测对照组,3-MA组,MTB组和3-MA+MTB组上清液LDH的OD值。结果:LC3在肺泡Ⅱ型上皮细胞显著表达,结核分枝杆菌感染后LC3表达降低。细胞凋亡和坏死染色结果显示空白组和3-MA组没有明显差异(P>0.05),MTB组和3-MA+MTB组有明显差异(P<0.05)。LDH检测显示MTB组和3-MA+MTB组上清液LDH的OD值数据两两之间有明显差异(P<0.05)并且有时间依赖性。结论:肺泡II型上皮细胞自噬体在抵抗结核分枝杆菌的感染过程中起一定的作用。  相似文献   
37.
Respiratory syncytial virus (RSV) is the leading cause of viral bronchiolitis and pneumonia in infants and children. Currently, palivizumab is the only approved monoclonal antibody (mAb) for prophylaxis of RSV. However, a small percentage of patients are not protected by palivizumab; in addition, palivizumab does not inhibit RSV replication effectively in the upper respiratory tract. We report here the development and characterization of motavizumab, an ultra-potent, affinity-matured, humanized mAb derived from palivizumab. Several palivizumab variants that enhanced the neutralization of RSV in vitro by up to 44-fold were generated; however, in vivo prophylaxis of cotton rats with these antibodies conferred only about a twofold improvement in potency over palivizumab. This unexpected small increase of in vivo potency was caused by poor serum pharmacokinetics and lung bio-availability that resulted from unexpectedly broad tissue binding. Subsequent analyses revealed that changes at three amino acids arising from the affinity maturation markedly increased the non-specific binding to various tissues. Our results suggested that k(on)-driven mutations are more likely to initiate non-specific binding events than k(off)-driven mutations. Reversion of these three residues to the original sequences greatly diminished the tissue binding. The resulting mAb, motavizumab, binds to RSV F protein 70-fold better than palivizumab, and exhibits about a 20-fold improvement in neutralization of RSV in vitro. In cotton rats, at equivalent concentrations, motavizumab reduced pulmonary RSV titers to up to 100-fold lower levels than did palivizumab and, unlike palivizumab, motavizumab very potently inhibited viral replication in the upper respiratory tract. This affinity-enhanced mAb is being investigated in pivotal clinical trials. Importantly, our engineering process offers precious insights into the improvement of other therapeutic mAbs.  相似文献   
38.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a carcinogenic compound of cigarette smoke that generates electrophilic intermediates capable of damaging DNA. Recently, we have shown that NNK can modulate mediator production by alveolar macrophages (AM) and bronchial and alveolar epithelial cells, suggesting that cigarette smoke can alter lung immune response. Thus, we investigated the effect of NNK and cigarette smoke extract (CSE) on AM capacity to eliminate tumoral cells. Rat AM cell line, NR8383, was treated with NNK (500 μM) or CSE (3%) and stimulated with lipopolysaccharide (10 ng/ml). The release of cytotoxic mediators, tumor necrosis factor (TNF) and reactive oxygen species (ROS), was measured in cell-free supernatants using ELISA and superoxide anion production. TNF- and ROS-dependent cytotoxicity were studied using a 51Chromium-release assay and WEHI-164 and P-815 cell lines. Treatment of AM with NNK and CSE for 18 h significantly inhibited AM TNF release. CSE exposure resulted in a significant increase of ROS production, whereas NNK did not. TNF-dependent cytotoxic activity of NR8383 and freshly isolated rat AM was significantly inhibited after treatment with NNK and CSE. Interestingly, although ROS production was stimulated by CSE and not affected by NNK, CSE inhibited AM ROS-dependent cytotoxicity. These results suggest that NNK may be one of the cigarette smoke components responsible for the reduction of pulmonary cytotoxicity. Thus, NNK may have a double pro-carcinogenic effect by contributing to DNA adduct formation and inhibiting AM cytotoxicity against tumoral cells.  相似文献   
39.
We designed a single nucleotide primer extension (SNaPshot) assay for Pneumocystis jirovecii genotyping, targeting mt85 SNP of the mitochondrial large subunit ribosomal RNA locus, to improve minority allele detection. We then analyzed 133 consecutive bronchoalveolar lavage (BAL) fluids tested positive for P. jirovecii DNA by quantitative real‐time PCR, obtained from two hospitals in different locations (Hospital 1 [= 95] and Hospital 2 [= 38]). We detected three different alleles, either singly (mt85C: 39.1%; mt85T: 24.1%; mt85A: 9.8%) or together (27%), and an association between P. jirovecii mt85 genotype and the patient's place of hospitalization (= 0.011). The lowest fungal loads (median = 0.82 × 103 copies/μl; range: 15–11 × 103) were associated with mt85A and the highest (median = 1.4 × 106 copies/μl; range: 17 × 103–1.3 × 107) with mt85CTA (= 0.010). The ratios of the various alleles differed between the 36 mixed‐genotype samples. In tests of serial BALs (median: 20 d; range 4–525) from six patients with mixed genotypes, allele ratio changes were observed five times and genotype replacement once. Therefore, allele ratio changes seem more frequent than genotype replacement when using a SNaPshot assay more sensitive for detecting minority alleles than Sanger sequencing. Moreover, because microscopy detects only high fungal loads, the selection of microscopy‐positive samples may miss genotypes associated with low loads.  相似文献   
40.

Background

Acute respiratory distress syndrome (ARDS) is a disease associated with a high mortality rate. The initial phase is characterized by induction of inflammatory cytokines and chemokines and influx of circulating inflammatory cells, including macrophages which play a pivotal role in the innate and adaptive immune responses to injury. Growing evidence points to phenotypic heterogeneity and plasticity between various macrophage activation states.

Methods

In this study, gene expression in alveolar macrophages and circulating leukocytes from healthy control subjects and patients with ARDS was assessed by mRNA microarray analysis.

Results

Both alveolar macrophages and circulating leukocytes demonstrated up-regulation of genes encoding chemotactic factors, antimicrobial peptides, chemokine receptors, and matrix metalloproteinases. Two genes, the pro-inflammatory S100A12 and the anti-inflammatory IL-1 decoy receptor IL-1R2 were significantly induced in both cell populations in ARDS patients, which was confirmed by protein quantification. Although S100A12 levels did not correlate with disease severity, there was a significant association between early plasma levels of IL-1R2 and APACHE III scores at presentation. Moreover, higher levels of IL-1R2 in plasma were observed in non-survivors as compared to survivors at later stages of ARDS.

Conclusions

These results suggest a hybrid state of alveolar macrophage activation in ARDS, with features of both alternative activation and immune tolerance/deactivation.. Furthermore, we have identified a novel plasma biomarker candidate in ARDS that correlates with the severity of systemic illness and mortality.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0190-x) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号