首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5128篇
  免费   334篇
  国内免费   88篇
  2023年   32篇
  2022年   38篇
  2021年   62篇
  2020年   110篇
  2019年   156篇
  2018年   182篇
  2017年   106篇
  2016年   97篇
  2015年   97篇
  2014年   240篇
  2013年   263篇
  2012年   179篇
  2011年   189篇
  2010年   110篇
  2009年   134篇
  2008年   176篇
  2007年   225篇
  2006年   172篇
  2005年   174篇
  2004年   106篇
  2003年   104篇
  2002年   87篇
  2001年   61篇
  2000年   51篇
  1999年   51篇
  1998年   62篇
  1997年   47篇
  1996年   35篇
  1995年   33篇
  1994年   41篇
  1993年   45篇
  1992年   39篇
  1991年   35篇
  1990年   37篇
  1989年   41篇
  1988年   28篇
  1987年   34篇
  1985年   129篇
  1984年   260篇
  1983年   207篇
  1982年   257篇
  1981年   246篇
  1980年   165篇
  1979年   159篇
  1978年   132篇
  1977年   106篇
  1976年   62篇
  1975年   42篇
  1974年   34篇
  1973年   28篇
排序方式: 共有5550条查询结果,搜索用时 15 毫秒
931.
Organic rechargeable batteries gain huge scientific interest owing to the design flexibility and resource renewability of the active materials. However, the low reduction potentials still remain a challenge to compete with the inorganic cathodes. This study demonstrates a simple and efficient approach to tune the redox properties of perylene diimides (PDIs) as high voltage cathodes for organic‐based sodium‐ion batteries (SIBs). With appropriate electron‐withdrawing groups as substituents on perylene diimides, this study shows a remarkable tunability in the discharge potential from 2.1 to 2.6 V versus Na+/Na with a sodium intake of ≈1.6 ions per molecule. Further, this study explores tuning the shape of the voltage profiles by systematically tuning the dihedral angle in the perylene ring and demonstrates a single plateau discharge profile for tetrabromo‐substituted perylene diimide (dihedral angles θ1 & θ2 = 38°). Detailed structural analysis and electrochemical studies on substituted PDIs unveil the correlation between molecular structure and voltage profile. The results are promising and offer new avenues to tailor the redox properties of organic electrodes, a step closer toward the realization of greener and sustainable electrochemical storage devices.  相似文献   
932.
To accommodate the decreasing lithium resource and ensure continuous development of energy storage industry, sodium‐based batteries are widely studied to inherit the next generation of energy storage devices. In this work, a novel Na super ionic conductor type KTi2(PO4)3/carbon nanocomposite is designed and fabricated as sodium storage electrode materials, which exhibits considerable reversible capacity (104 mAh g?1 under the rate of 1 C with flat voltage plateaus at ≈2.1 V), high‐rate cycling stability (74.2% capacity retention after 5000 cycles at 20 C), and ultrahigh rate capability (76 mAh g?1 at 100 C) in sodium ion batteries. Besides, the maximum ability for sodium storage is deeply excavated by further investigations about different voltage windows in half and full sodium ion cells. Meanwhile, as cathode material in sodium‐magnesium hybrid batteries, the KTi2(PO4)3/carbon nanocomposite also displays good electrochemical performances (63 mAh g?1 at the 230th cycle under the voltage window of 1.0–1.9 V). The results demonstrate that the KTi2(PO4)3/carbon nanocomposite is a promising electrode material for sodium ion storage, and lay theoretical foundations for the development of new type of batteries.  相似文献   
933.
Sodium‐ion batteries are intensively investigated for large‐scale energy storage due to the favorable sodium availability. However, the anode materials have encountered numerous problems, such as insufficient cycling performance, dissatisfactory capacity, and low safety. Here, a novel post‐spinel anode material, i.e., single‐crystalline NaVSnO4, is presented with the confined 1D channels and the shortest diffusion path. This material delivers an ultra long cycling life (84% capacity retention after 10 000 cycles), a high discharging capacity (163 mA h g?1), and a safe average potential of 0.84 V. Results indicate that the post‐spinel structure is well maintained over 10 000 cycles, surprisingly, with 0.9% volume change, the Sn4+/Sn2+ based redox enables two sodium ions for reversible release and uptake, and the diffusion coefficient of sodium ions is characterized by 1.26 × 10?11 cm2 s?1. The findings of this study provide a new insight into design of new frameworks with polyelectronic transfers for full performance electrode materials of sodium‐ion batteries.  相似文献   
934.
The achievement of the superior rate capability and cycling stability is always the pursuit of sodium‐ion batteries (SIBs). However, it is mainly restricted by the sluggish reaction kinetics and large volume change of SIBs during the discharge/charge process. This study reports a facile and scalable strategy to fabricate hierarchical architectures where TiO2 nanotube clusters are coated with the composites of ultrafine MoO2 nanoparticles embedded in carbon matrix (TiO2@MoO2‐C), and demonstrates the superior electrochemical performance as the anode material for SIBs. The ultrafine MoO2 nanoparticles and the unique nanorod structure of TiO2@MoO2‐C help to decrease the Na+ diffusion length and to accommodate the accompanying volume expansion. The good integration of MoO2 nanoparticles into carbon matrix and the cable core role of TiO2 nanotube clusters enable the rapid electron transfer during discharge/charge process. Benefiting from these structure merits, the as‐made TiO2@MoO2‐C can deliver an excellent cycling stability up to 10 000 cycles even at a high current density of 10 A g?1. Additionally, it exhibits superior rate capacities of 110 and 76 mA h g?1 at high current densities of 10 and 20 A g?1, respectively, which is mainly attributed to the high capacitance contribution.  相似文献   
935.
NaVPO4F has received a great deal of attention as cathode material for Na‐ion batteries due to its high theoretical capacity (143 mA h g?1), high voltage platform, and structural stability. Novel NaVPO4F/C nanofibers are successfully prepared via a feasible electrospinning method and subsequent heat treatment as self‐standing cathode for Na‐ion batteries. Based on the morphological and microstructural characterization, it can be seen that the NaVPO4F/C nanofibers are smooth and continuous with NaVPO4F nanoparticles (≈6 nm) embedded in porous carbon matrix. For Na‐storage, this electrode exhibits extraordinary electrochemical performance: a high capacity (126.3 mA h g?1 at 1 C), a superior rate capability (61.2 mA h g?1 at 50 C), and ultralong cyclability (96.5% capacity retention after 1000 cycles at 2 C). 1D NaVPO4F/C nanofibers that interlink into 3D conductive network improve the conductivity of NaVPO4F, and effectively restrain the aggregation of NaVPO4F particles during charge/discharge process, leading to the high performance.  相似文献   
936.
937.
938.
939.
目的:比较高浓度玻璃酸钠滴眼液与聚乙二醇滴眼液防治飞秒激光辅助LASIK术后干眼的临床效果。方法:选取2016年1月至2017年1月在我院视光学中心收治的飞秒激光辅助LASIK术后干眼患者80例并将其随机分为A、B两组,分别给予玻璃酸钠滴眼液(3 g/L)、聚乙二醇滴眼液,在用药后1周、2周、1个月进行干眼体征检查,比较患者用药前后泪液分泌试验(SIT)、泪膜破裂时间(BUT)、角膜荧光素染色(FL)的变化。结果:术后1周,所有患者BUT均较术前显著降低,FL均较术前显著升高,差异均有统计学意义(P0.05),但SIT与术前比较差异无统计学意义(P0.05)。两组患者用药后SIT数值随时间变化差异没有统计学意义(P0.05);A组和B组分别在用药后1周、2周、1个月时进行比较,SIT变化差异没有统计学意义(P0.05);而A组BUT时间、FL评分改善时间明显早于B组,差异有统计学意义(P0.05)。结论:滴用高浓度玻璃酸钠滴眼液(3 g/L)对飞秒激光辅助LASIK术后干眼患者的效果明显优于滴用聚乙二醇。  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号