首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1242篇
  免费   54篇
  国内免费   64篇
  2024年   1篇
  2023年   7篇
  2022年   7篇
  2021年   12篇
  2020年   20篇
  2019年   32篇
  2018年   23篇
  2017年   29篇
  2016年   30篇
  2015年   29篇
  2014年   30篇
  2013年   64篇
  2012年   29篇
  2011年   96篇
  2010年   27篇
  2009年   87篇
  2008年   75篇
  2007年   84篇
  2006年   56篇
  2005年   54篇
  2004年   49篇
  2003年   50篇
  2002年   35篇
  2001年   46篇
  2000年   34篇
  1999年   33篇
  1998年   20篇
  1997年   28篇
  1996年   27篇
  1995年   34篇
  1994年   30篇
  1993年   28篇
  1992年   43篇
  1991年   21篇
  1990年   17篇
  1989年   10篇
  1988年   9篇
  1987年   8篇
  1986年   4篇
  1985年   13篇
  1984年   5篇
  1983年   5篇
  1982年   7篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1973年   1篇
  1970年   2篇
排序方式: 共有1360条查询结果,搜索用时 562 毫秒
91.
A bioactive foam reactor (BFR), a novel bioreactor operated using surfactant foams and suspended microorganisms for the treatment of gaseous toluene, was investigated to characterize its performance with respect to the mass transfer and biodegradation rates. The BFR system consisted of two reactors in series; a foam column for toluene mass transfer using fine bubbles and a cell reservoir where suspended microorganisms actively biodegraded toluene. In this study, a series of short-term experiments demonstrated that the BFR could achieve stable removal performance and a high elimination capacity (EC) for toluene at 100.3 g/m3/h. A numerical model, combining mass balance equations for the mass transfer and subsequent biodegradation, resulted in reasonable agreement with the experimental findings. At an inlet toluene concentration of 100 ppmv, the toluene concentration in the liquid phase remained extremely low, indicating that the microbial activity was not hindered in the BFR system. However, the experimental and model prediction results showed that the actual mass of toluene transferred into the liquid phase was not closely balanced with the amount of toluene biodegraded in the BFR used in this study. Consequently, methods, such as increasing the effective volume of the foam column or the mass transfer coefficient, need to be implemented to achieve higher toluene EC and better BFR performance.  相似文献   
92.
In this study, the denitrification performance of the mixotrophic biological reactor was investigated under varying Fe(II)/Mn(II) molar ratio conditions. Results indicate that the optimal nitrate removal ratio occurred at an Fe(II)/Mn(II) molar ratio of 9:1, pH of 7, with an HRT of 10?h. When the reactor was performing under optimal conditions, the nitrate removal reached 100.00% at a rate of 0.116?mmol·L?1·h?1. The proportion of oxidized Fe(II) and Mn(II) reached 99.29% and 21.88%, respectively. High-throughput sequencing results show that Pseudomonas was the dominant species in the mixotrophic biological reactor. Furthermore, the relative abundance of Pseudomonas and denitrification performance was significantly influenced by variation in the Fe(II)/Mn(II) molar ratio.  相似文献   
93.
In this paper, we are presenting a biological process to recover phosphorus by solubilizing low-grade phosphate rocks. To this end, the efficiency of different phosphate-solubilizing microorganism (PSM) species for solubilizing P from phosphate rocks using both pure cultures and associations. Nutritional conditions, phosphate rock concentrations, and reactor designs were tested. The genus Bacillus, especially Bacillus megaterium (ATCC 14581), was found to be the most promising PSM for solubilizing P. Production of organic acids and acidic pH values were shown to be directly related to P solubilizing. However, associations between tested microorganisms did not significantly enhance process efficiency. We conclude that nutritional factors of the medium are important to solubilization, and lower phosphate rock concentrations lead to better solubilization. The Air Lift reactor was promising for B. megaterium (ATCC 14581), but adaptations are needed for further tests.  相似文献   
94.
Due to serious eutrophication in water bodies, nitrogen removal has become a critical stage for wastewater treatment plants (WWTPs) over past decades. Conventional biological nitrogen removal processes are based on nitrification and denitrification (N/DN), and are suffering from several major drawbacks, including substantial aeration consumption, high fugitive greenhouse gas emissions, a requirement for external carbon sources, excessive sludge production and low energy recovery efficiency, and thus unable to satisfy the escalating public needs. Recently, the discovery of anaerobic ammonium oxidation (anammox) bacteria has promoted an update of conventional N/DN-based processes to autotrophic nitrogen removal. However, the application of anammox to treat domestic wastewater has been hindered mainly by unsatisfactory effluent quality with nitrogen removal efficiency below 80%. The discovery of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) during the last decade has provided new opportunities to remove this barrier and to achieve a robust system with high-level nitrogen removal from municipal wastewater, by utilizing methane as an alternative carbon source. In the present review, opportunities and challenges for nitrate/nitrite-dependent anaerobic methane oxidation are discussed. Particularly, the prospective technologies driven by the cooperation of anammox and n-DAMO microorganisms are put forward based on previous experimental and modeling studies. Finally, a novel WWTP system acting as an energy exporter is delineated.  相似文献   
95.
A kinetic resolution process for the production of chiral amines was developed using an enzyme-membrane reactor (EMR) and a hollow-fiber membrane contactor with (S)-specific omega-transaminases (omega-TA) from Vibrio fluvialis JS17 and Bacillus thuringiensis JS64. The substrate solution containing racemic amine and pyruvate was recirculated through the EMR and inhibitory ketone product was selectively extracted by the membrane contactor until enantiomeric excess of (R)-amine exceeded 95%. Using the reactor set-up with flat membrane reactor (10-mL working volume), kinetic resolutions of alpha-methylbenzylamine (alpha-MBA) and 1-aminotetralin (200 mM, 50 mL) were carried out. During the operation, concentration of ketone product, i.e., acetophenone or alpha-tetralone, in a substrate reservoir was maintained below 0.1 mM, suggesting efficient removal of the inhibitory ketone by the membrane contactor. After 47 and 32.5 h of operation using 5 U/mL of enzyme, 98.0 and 95.5% ee of (R)-alpha-MBA and (R)-1-aminotetralin were obtained at 49.5 and 48.8% of conversion, respectively. A hollow-fiber membrane reactor (39-mL working volume) was used for a preparative-scale kinetic resolution of 1-aminotetralin (200 mM, 1 L). After 133 h of operation, enantiomeric excess reached 95.6% and 14.3 g of (R)-1-aminotetralin was recovered (97.4% of yield). Mathematical modeling of the EMR process including the membrane contactor was performed to evaluate the effect of residence time. The simulation results suggest that residence time should be short to maintain the concentration of the ketone product in EMR sufficiently low so as to decrease conversion per cycle and, in turn, reduce the inhibition of the omega-TA activity.  相似文献   
96.
The influences of geometric configuration, mycelial broth rheology and superficial gas velocity (Usg) were investigated with respect to the following hydrodynamic parameters: gas holdup (), oxygen transfer coefficient (KLa) and mixing time (tm). Increases in Usg and height of gas separator (Ht) caused an increase in and KLa, and a decrease in tm. Consequently, a diameter ratio (Dd/Dr) of 0.71 and Ht 0.20 m were found to be the best geometry and operation parameters to achieve high aeration and mixing efficiency for the high viscous broth system in the cultivation of filamentous fungi. An external airlift reactor (EALR) was developed and designed for the cultivation of filamentous fungi. The EALR with two spargers excels in reliability and high aeration and mass transfer coefficiency, resulting in a fast mycelial growth and high biomass productivity in the cultivation of the fungus Rhizopus oryzae.  相似文献   
97.
Conversion of benzaldehyde to L-phenylacetyl carbinol (L-PAC) was achieved with immobilized, growing cells of Saccharomyces cerevisiae in different reactors. Product formation increased (31%) with the subsequent initial reuses of the entrapped cells. Biomass production and PAC formation depleted (40 and 57%, respectively) after 4-5 continuous growth and biotransformation cycles. With the regeneration of the biocatalysts, catalytic activity of the cells was resumed. The highest yields were in a stirred tank reactor (29 g PAC) from 77 g benzeldehyde with 14 repeated uses of entrapped cells.  相似文献   
98.
The Freter model: A simple model of biofilm formation   总被引:1,自引:0,他引:1  
A simple, conceptual model of biofilm formation, due to R. Freter et al. (1983), is studied analytically and numerically in both CSTR and PFR. Two steady state regimes are identified, namely, the complete washout of the microbes from the reactor and the successful colonization of both the wall and bulk fluid. One of these is stable for any particular set of parameter values and sharp and explicit conditions are given for the stability of each. The effects of adding an anti-microbial agent to the CSTR are examined.Supported by NSF Grant DMS 0107439 and UTA Grant REP 14748717Supported by NSF Grant DMS 0107160  相似文献   
99.
The bioremediation of aged polychlorinated biphenyl (PCB)-contaminated soils is adversely affected by the low bioavailability of the pollutants. Randomly methylated-beta-cyclodextrins (RAMEB) were tested as a potential PCB-bioavailability-enhancing agent in the aerobic treatment of two aged-contaminated soils. The soils, contaminated by about 890 and 8500 mg/kg of Aroclor 1260 PCBs, were amended with biphenyl (4 g/kg), inorganic nutrients (to adjust their C:N ratio to 20:1), and variable amounts of RAMEB (0%, 0.5%, or 1.0% [w/w]) and treated in both aerobic 3-L solid-phase reactors and 1.5-L packed-bed loop reactors for 6 months. Notably, significant enhancement of the PCB biodegradation and dechlorination, along with a detectable depletion of the initial soil ecotoxicity, were generally observed in the RAMEB-treated reactors of both soils. RAMEB effects were different in the two soils, depending upon the treatment conditions employed, and generally increased proportionally with the concentration at which RAMEB was applied. RAMEB, which was slowly metabolized by the soil's aerobic microorganisms, was found to markedly enhance the occurrence of the indigenous aerobic, cultivable biphenyl-growing bacteria harboring genes homologous to those of two highly specialized PCB degraders (i.e., bphABC genes of Pseudomonas pseudoalcaligenes KF707 and bphA1A2A3A4BC1 genes of Rhodococcus globerulus P6) and chlorobenzoic acid-degrading bacteria as well as the occurrence of PCBs in the water phase of the soil reactors. These findings indicate that RAMEB enhanced the aerobic bioremediation of the two soils by increasing the bioavailability of PCBs and the occurrence of specialized bacteria in the soil reactors.  相似文献   
100.
This numerical study evaluates the momentum and mass transfer in an immobilized enzyme reactor. The simulation is based on the solution of the three-dimensional Navier-Stokes equation and a scalar transport equation with a sink term for the transport and the conversion of substrate to product. The reactor consists of a container filled with 20 spherical enzyme carriers. Each of these carriers is covered with an active enzyme layer where the conversion takes place. To account for the biochemical activity, the sink term in the scalar transport equation is represented by a standard Michaelis-Menten approach. The simulation gives detailed information of the local substrate and product concentrations with respect to external and internal transport limitations. A major focus is set on the influence of the substrate transport velocity on the catalytic process. For reactor performance analysis the overall and the local transport processes are described by a complete set of dimensionless variables. The interaction between substrate concentration, velocity, and efficiency of the process can be studied with the help of these variables. The effect of different substrate inflow concentrations on the process can be seen in relation to velocity variations. The flow field characterization of the system makes it possible to understand fluid mechanical properties and its importance to transport processes. The distribution of fluid motion through the void volume has different properties in different parts of the reactor. This phenomenon has strong effects on the arrangement of significantly different mass transport areas as well as on process effectiveness. With the given data it is also possible to detect zones of high, low, and latent enzymatic activity and to determine whether the conversion is limited due to mass transfer or reaction resistances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号