首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1431篇
  免费   33篇
  国内免费   107篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   16篇
  2020年   8篇
  2019年   12篇
  2018年   11篇
  2017年   16篇
  2016年   12篇
  2015年   18篇
  2014年   18篇
  2013年   50篇
  2012年   31篇
  2011年   35篇
  2010年   23篇
  2009年   74篇
  2008年   84篇
  2007年   89篇
  2006年   95篇
  2005年   69篇
  2004年   99篇
  2003年   53篇
  2002年   47篇
  2001年   42篇
  2000年   70篇
  1999年   56篇
  1998年   78篇
  1997年   58篇
  1996年   37篇
  1995年   42篇
  1994年   47篇
  1993年   33篇
  1992年   37篇
  1991年   39篇
  1990年   33篇
  1989年   21篇
  1988年   19篇
  1987年   40篇
  1986年   24篇
  1985年   10篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1980年   2篇
排序方式: 共有1571条查询结果,搜索用时 31 毫秒
991.
Agrobacterium-mediated genetic transformation of a Dendrobium orchid   总被引:1,自引:0,他引:1  
A protocol was developed to obtain stable transgenic orchids (Dendrobium nobile) via Agrobacterium-mediated transformation of protocorm-like bodies (PLBs). Agrobacterium tumefaciens strains AGL1 and EHA105 were used, with each containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing -glucuronidase gene (gus-int) as a reporter gene. PLBs were co-cultivated with A. tumefaciens, which had been activated with 100 M acetosyringone (AS), for 2–3 days until the growth of A. tumefaciens was observed on co-cultivation medium containing 100 M AS. Following co-cultivation, PLBs were cultured on selective medium containing 30 mg l–1 hygromycin and 250 mg l–1 cefotaxime. Proliferating PLBs were repeatedly selected for hygromycin resistance. A high efficiency of transformation (18%) was obtained with a total of 73 stably transformed lines produced. Incorporation and expression of the transgenes were confirmed by Southern blot analysis and GUS histochemical assay.  相似文献   
992.
The Agrobacterium rhizogenes rolD gene, coding for an ornithine cyclodeaminase involved in the biosynthesis of proline from ornithine, has been inserted in Lycopersicon esculentum cv Tondino with the aim of studying its effects on plant morphological characters including pathogen defense response. The analysis of plants transgenic for rolD did not show major morphological modifications. First generation transgenic plants however were found to flower earlier, and showed an increased number of inflorescences and higher fruit yield. Transformed plants were also analysed for parameters linked to pathogen defense response, i.e. ion leakage in the presence of the toxin produced by the fungus Fusarium oxysporum f. sp. lycopersici, and expression of the pathogenesis-related PR-1 gene. All the plants harbouring the rolD gene were shown to be more tolerant to the toxin in ion leakage experiments, with respect to the untransformed regenerated controls and the cv Tondino. PR-1 gene expression was quantitated by means of real-time PCR both at the basal level and after treatment with salicylic acid, an inducer of Systemic Acquired Resistance. In both cases the amount of PR-1 mRNA was higher in the transgenic plants. It seems therefore that the transformation of tomato plants with rolD could lead to an increased competence for defense response, as shown by toxin tolerance and increased expression of the Systemic Acquired Resistance marker gene PR-1. The results are finally discussed in view of their possible economic relevance.Communicated by G. Wenzel  相似文献   
993.
Summary Hemp (Cannabis sativa L.) is cultivated in many parts of the world for ils fiber, oil, and seed. The development of new hemp cultivars with improved traits could be facilitated through the application of biotechnological strategies. The purpose of this study was to investigate the propagation of hemp in tissue culture and to establish a protocol for Agrobacterium-mediated transformation for foreign gene introduction. Stem and leaf segments from seedlings of four hemp varieties were placed on Murashige and Skoog medium with Gamborg B5 vitamins (MB) supplemented with 5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 μM kinetin, 3% sucrose, and 8 gl−1 agar. Large masses of callus were produced within 4 wk for all cultivars. Suspension cultures were established in MB medium containing 2.5 μM 2,4-D. To promote embryogenesis or organogenesis, explants, callus, and suspension cultures derived from a range of explant sources and seedling ages were exposed to variations in the culture medium and changes to the culture environment. None of the treatments tested were successful in promoting plantlet regeneration. Suspension cells were transformed with Agrobacterium tumefaciens strain EHA101 carrying the binary vector pNOV3635 with a gene encoding phosphomannose isomerase (PMI). Transformed callus was selected on medium containing 1–2% mannose. A chlorophenol red assay was used to confirm that the PMI gene was expressed. Polymerase chain reaction and Southern hybridization detected the presence of the PMI gene. Copy number in different lines ranged from one to four.  相似文献   
994.
Summary Protoplasts were isolated from Agrobacterium rhizogenes A4-transformed cell line of Medicago sativa L. The highest yield of protoplasts (4.2×106 per g fresh weight) was obtained from 12-d-old calluses after being subeultured on fresh medium. The viability of protoplasts reached over 80%. Protoplasts were induced to undergo sustained divisions when cultured in Durand et al. (DPD) medium supplemented with 2 mgl−1 (9.05 μM) 2,4-dichlorophenoxyacetic acid, 0,2mgl−1 (0.93 μM) kinetin, 0.3 M mannitol, 2% (w/v) sucrose, and 500 mgl−1 casein hydrolyzate at a plating density of 1.0×105 per ml. An agarose-beads culture method was appropriate for protoplast division of transformed alfalfa. The division frequency was about 30%. Numerous hairy roots were induced from protocalluses on Murashige and Skoog medium without growth regulators. Paper electrophoresis revealed that all of the regenerated hairy roots tested synthesized the corresponding opines. This protoplast culture system would be valuable for further somatic hybridization in forage legumes.  相似文献   
995.
An efficient procedure for direct organogenesis and regeneration of hop (Humulus lupulus L.) was established. For the first time Agrobacterium-mediated genetic transformation of hop (cv. "Tettnanger") was achieved. Shoot internodes from in vitro cultures were identified as the most suitable type of explant for regeneration. Using this type of explant, a shoot-inducing medium was developed that supported direct organogenesis of approximately 50% of the explants. Plantlets were successfully rooted and transferred to the greenhouse. Overall, in less than 6 months hop cultures propagated in vitro were regenerated to plants in the greenhouse. Agrobacterium-mediated genetic transformation was performed with the reporter gene GUS (-glucuronidase). The presence and function of transgenes in plants growing in the greenhouse was verified by PCR (polymerase chain reaction) and enzyme assay for GUS activity, respectively. We have obtained 21 transgenic plants from 1,440 explants initially transformed, yielding an overall transformation efficiency of 1.5%.Abbreviations BAP 6-Benzylaminopurine - GA3 Gibberellic acid - GUS -Glucuronidase - IAA Indole-3-acetic acid - IBA Indole-3-butyric acid - NAA -Naphthaleneacetic acid - nptII Neomycin phosphotransferase II - PCR Polymerase chain reaction - TDZ 1-Phenyl-3-(1,2,3-thiadiazol-5-yl) urea (thidiazuron)Communicated by H. Lörz  相似文献   
996.
Transformed root cultures of Anethum graveolens were induced by inoculation of aseptically grown seedlings with Agrobacterium rhizogenes carrying plasmid pRi 1855. The main component of the essential oils from the fruits and from the roots of the parent plant was carvone, whereas -phellandrene and apiole were dominant in the oil from, respectively, the aerial parts and the hairy roots. The essential oils from the fruits, aerial parts and roots of the parent plant were at 2%, 0.3% and 0.06% (v/w), respectively, but only 0.02% (v/w) in the hairy root cultures. Growth of the hairy root cultures reached 600 mg dry wt/50 ml medium after 50 days. The essential oil composition did not change significantly during their growth.  相似文献   
997.
We transformed haploid mycelium of Hebeloma cylindrosporum via Agrobacterium tumefaciens and optimised the procedure to develop a new tool for insertional mutagenesis in this fungus. Southern blot analysis of 83 randomly selected transformants showed that they all contained plasmid inserts. Each of them showed a unique hybridisation pattern, suggesting that integration was random in the fungal genome. Sixty percent of transformants obtained in the presence of bacteria pre-treated with acetosyringone integrated a single transferred DNA copy. Thermal asymmetric interlaced polymerase chain reaction allowed us to recover the left border and the right border junctions in 85% and 15% of transformants analysed, respectively. Results show that A. tumefaciens-mediated transformation may be a powerful tool for insertional mutagenesis in H. cylindrosporum.  相似文献   
998.
The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells fromAgrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.  相似文献   
999.
BACKGROUND AND AIMS: Genetic transformation of plants relies on two independent but concurrent processes: integration of foreign DNA into plant cells and regeneration of whole plants from these transformed cells. Cell competence for regeneration and for transformation does not always fall into the same cell type/developmental stage, and this is one of the main causes of the so-called recalcitrance for transformation of certain plant species. In this study, a detailed examination of the first steps of morphogenesis from citrus explants after co-cultivation with Agrobacterium tumefaciens was performed, and an investigation into which cells and tissues are competent for regeneration and transformation was carried out. Moreover, the role of phytohormones in the co-cultivation medium as possible enhancers of gene transfer was also studied. METHODS: A highly responsive citrus genotype and well-established culture conditions were used to perform a histological analysis of morphogenesis and cell competence for transformation after co-cultivation of citrus epicotyl segments with A. tumefaciens. In addition, the role of phytohormones as transformation enhancers was investigated by flow cytometry. KEY RESULTS: It is demonstrated that cells competent for transformation are located in the newly formed callus growing from the cambial ring. Conditions conducive to further development of this callus, such as treatment of explants in a medium rich in auxins, resulted in a more pronounced formation of cambial callus and a slower shoot regeneration process, both in Agrobacterium-inoculated and non-inoculated explants. Furthermore, co- cultivation in a medium rich in auxins caused a significant increase in the rate of actively dividing cells in S-phase, the stage in which cells are more prone to integrate foreign DNA. CONCLUSIONS: Use of proper co-cultivation medium and conditions led to a higher number of stably transformed cells and to an increase in the final number of regenerated transgenic plants.  相似文献   
1000.
Summary A characteristic phenotype of highly embryogenic explants along with the location of embryogenesis- and transformation-competent cells/tissues on immature cotyledons of soybean [Glycine max (L.) Merrill.] under hygromycin selection was identified. This highly embryogenic immature cotyledon was characterized with emergence of somatic embryos and incidence of browning/necrotic tissues along the margins and collapsed tissues in the mid-region of an explant incubated upwards on the selection medium. The influences of various parameters on induction of somatic embryogenesis on immature cotyledons following Agrobacterium tumefaciens-mediated transformation and selection were investigated. Using cotyledon explants derived from immature embryos of 5–8 mm in length, a 1∶1 (v/v; bacterial cells to liquid D40 medium) concentration of bacterial suspension and 4-wk cocultivation period significantly increased the frequency of transgenic somatic embryos. Whereas, increasing the infection period of explants or subjecting explants to either wounding or acetosyringone treatments did not increase the frequency of transformation. An optimal selection regime was identified when inoculated immature cotyledons were incubated on either 10 or 25 mgl−1 hygromycin for a 2-wk period, and then maintained on selection media containing 25 mgl−1 hygromycin in subsequent selection periods. However, somatic embryogenesis was completely inhibited when inoculated immature cotyledons were incubated on a kanamycin selection medium. These findings clearly demonstrated that the tissue culture protocols for transformation of soybean should be established under both Agrobacterium and selection conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号